A new model for silicification of cyanobacteria in Proterozoic tidal flats

Microbial fossils preserved by early diagenetic chert provide a window into the Proterozoic biosphere, but seawater chemistry, microbial processes, and the interactions between microbes and the environment that contributed to this preservation are not well constrained. Here, we use fossilization experiments to explore the processes that preserve marine cyanobacterial biofilms by the precipitation of amorphous silica in a seawater medium that is analogous to Proterozoic seawater. These experiments demonstrate that the exceptional silicification of benthic marine cyanobacteria analogous to the oldest diagnostic cyanobacterial fossils requires interactions among extracellular polymeric substances (EPS), photosynthetically induced pH changes, magnesium cations (Mg2+), and >70 ppm silica.

[1]  L. T. Rangel,et al.  The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages , 2021, Proceedings of the Royal Society B.

[2]  D. Braun,et al.  Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record , 2020, Geology.

[3]  M. Rice,et al.  The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars , 2020, Icarus.

[4]  T. A. Goudge,et al.  Orbital Identification of Hydrated Silica in Jezero Crater, Mars , 2019, Geophysical Research Letters.

[5]  E. Sperling,et al.  New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group , 2019, Earth and Planetary Science Letters.

[6]  T. Bosak,et al.  An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids , 2019, Front. Microbiol..

[7]  T. Bosak,et al.  Formation of ordered dolomite in anaerobic photosynthetic biofilms , 2019, Geology.

[8]  Vasantharaja Raguraman,et al.  Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. , 2019, Carbohydrate polymers.

[9]  L. Bowen,et al.  Carbonate and silicate biomineralization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses , 2018 .

[10]  D. Conley,et al.  Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time , 2017, Front. Mar. Sci..

[11]  N. Butterfield Proterozoic photosynthesis – a critical review , 2015 .

[12]  D. Moreira,et al.  Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization , 2015, Front. Earth Sci..

[13]  Natalia N. Ivanova,et al.  The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4) , 2015, Standards in Genomic Sciences.

[14]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[15]  H. Oberhänsli,et al.  Sedimentary facies analyses from nano- to millimetre scale exploring past microbial activity in a high-altitude lake (Lake Son Kul, Central Asia) , 2015, Geological Magazine.

[16]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[17]  T. Bontognali,et al.  Microbially influenced formation of Mg‐calcite and Ca‐dolomite in the presence of exopolymeric substances produced by sulphate‐reducing bacteria , 2014 .

[18]  Y. Shukla,et al.  Proterozoic Fossil Cyanobacteria , 2012, Journal of Palaeosciences.

[19]  S. Gorb,et al.  Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma , 2012 .

[20]  Ana I. Bourbon,et al.  Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae , 2012 .

[21]  Hanqing Yu,et al.  pH dependence of structure and surface properties of microbial EPS. , 2012, Environmental science & technology.

[22]  Sema Salgın,et al.  Zeta Potentials and Isoelectric Points of Biomolecules: The Effects of Ion Types and Ionic Strengths , 2012, International Journal of Electrochemical Science.

[23]  Cristóbal N. Aguilar,et al.  Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed , 2011, Carbohydrate Polymers.

[24]  Guangli Yu,et al.  Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae , 2011, Marine drugs.

[25]  S. Bernasconi,et al.  Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates) , 2010 .

[26]  A. I. Ruiz,et al.  The role of biomineralization in the origin of sepiolite and dolomite , 2010, American Journal of Science.

[27]  H. Rocha,et al.  Biological activities of sulfated polysaccharides from tropical seaweeds. , 2010, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[28]  D. Prieur,et al.  Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks , 2009, Geobiology.

[29]  A. Decho,et al.  Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay , 2009, The ISME Journal.

[30]  K. Campbell,et al.  Silicifying biofilm exopolymers on a hot-spring microstromatolite: templating nanometer-thick laminae. , 2008, Astrobiology.

[31]  B Kremer,et al.  Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea , 2007, Geobiology.

[32]  I-Min A. Chen,et al.  The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions , 2007, Nucleic Acids Res..

[33]  Dmitry A. Los,et al.  The Cyanobacteria: Molecular Biology, Genomics and Evolution , 2008 .

[34]  Olivier Braissant,et al.  Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals , 2007 .

[35]  M. Kriechbaum,et al.  Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. , 2005, Biophysical journal.

[36]  A. Knoll,et al.  Secular change in the Precambrian silica cycle: Insights from chert petrology , 2005 .

[37]  A. Reysenbach,et al.  The experimental silicification of Aquificales and their role in hot spring sinter formation , 2005 .

[38]  B. Jones,et al.  Microbial silicification in Iodine Pool, Waimangu geothermal area, North Island, New Zealand: implications for recognition and identification of ancient silicified microbes , 2004, Journal of the Geological Society.

[39]  B. Jones,et al.  The Microbial Role in Hot Spring Silicification , 2004, Ambio.

[40]  K. Konhauser,et al.  The effect of cyanobacteria on silica precipitation at neutral pH: implications for bacterial silicification in geothermal hot springs , 2003 .

[41]  D. Newman,et al.  Microbial nucleation of calcium carbonate in the Precambrian , 2003 .

[42]  Andrew Steele,et al.  The simulated silicification of bacteria--new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. , 2002, Astrobiology.

[43]  D. G. Adams,et al.  Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites , 2001 .

[44]  S. Golubić,et al.  Early cyanobacterial fossil record: preservation, palaeoenvironments and identification , 1999 .

[45]  A. Reimer,et al.  Calcification in cyanobacterial biofilms of alkaline salt lakes , 1999 .

[46]  P. Ildefonse,et al.  MULTICOMPONENT ANALYSIS OF FTIR SPECTRA: QUANTIFICATION OF AMORPHOUS AND CRYSTALLIZED MINERAL PHASES IN SYNTHETIC AND NATURAL SEDIMENTS , 1998 .

[47]  K. Konhauser,et al.  In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation , 1995 .

[48]  T. Beveridge,et al.  Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis) , 1994 .

[49]  R. Siever The silica cycle in the Precambrian , 1992 .

[50]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[51]  D. Oehler Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia , 1978 .

[52]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[53]  G. D. Jackson,et al.  Aphebian Halite and Sulphate Indications in the Belcher Group, Northwest Territories , 1974 .

[54]  T. Parsons,et al.  A practical handbook of seawater analysis , 1968 .