Dynamical Systems on Networks: A Tutorial

This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on simple situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Applied Mathematics, and co-Director of MACSI, at the University of Limerick, Ireland

[1]  James P. Sethna,et al.  Zero-temperature hysteresis in the random-field Ising model on a Bethe lattice , 1996 .

[2]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  M. AizenmanS,et al.  Metastability effects in bootstrap percolation ? , 2001 .

[4]  Stephen B. Seidman,et al.  Network structure and minimum degree , 1983 .

[5]  P. Grassberger On the critical behavior of the general epidemic process and dynamical percolation , 1983 .

[6]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Semiopen Mass Action Systems * , 2022 .

[7]  Yamir Moreno,et al.  Cascading behaviour in complex socio-technical networks , 2013, J. Complex Networks.

[8]  Ian Stewart,et al.  Patterns of Synchrony in Coupled Cell Networks with Multiple Arrows , 2005, SIAM J. Appl. Dyn. Syst..

[9]  Noah E. Friedkin Social Influence Network Theory , 2006 .

[10]  F. Vazquez,et al.  Analytical solution of the voter model on uncorrelated networks , 2008, 0803.1686.

[11]  Petter Holme,et al.  Model Versions and Fast Algorithms for Network Epidemiology , 2014, 1403.1011.

[12]  Alessandro Vespignani,et al.  Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm , 2012, BMC Medicine.

[13]  Reuven Cohen,et al.  Limited path percolation in complex networks. , 2007, Physical review letters.

[14]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[15]  G. Marwell,et al.  A Theory of the Critical Mass. I. Interdependence, Group Heterogeneity, and the Production of Collective Action , 1985, American Journal of Sociology.

[16]  J. Robins,et al.  Second look at the spread of epidemics on networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  S. Redner,et al.  Dynamics of vacillating voters , 2007, 0710.0914.

[18]  Hans J. Herrmann,et al.  Shock waves on complex networks , 2014, Scientific Reports.

[19]  Yamir Moreno,et al.  Dynamics of rumor spreading in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Matt J Keeling,et al.  Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Mason A. Porter,et al.  Generalized Master Equations for Non-Poisson Dynamics on Networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Kauffman,et al.  Autocatalytic replication of polymers , 1986 .

[23]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[24]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[25]  Peter J. Mucha,et al.  Role of social environment and social clustering in spread of opinions in co-evolving networks , 2013, Chaos.

[26]  Thilo Gross,et al.  Adaptive coevolutionary networks: a review , 2007, Journal of The Royal Society Interface.

[27]  Istvan Z Kiss,et al.  Epidemic spread in networks: Existing methods and current challenges. , 2014, Mathematical modelling of natural phenomena.

[28]  Martin Rosvall,et al.  Effect of Memory on the Dynamics of Random Walks on Networks , 2014, J. Complex Networks.

[29]  M. Porter,et al.  Critical Truths About Power Laws , 2012, Science.

[30]  Joseph D Skufca,et al.  Communication and synchronization in, disconnected networks with dynamic topology: moving neighborhood networks. , 2004, Mathematical biosciences and engineering : MBE.

[31]  P. Driessche,et al.  Effective degree network disease models , 2011, Journal of mathematical biology.

[32]  T. Snijders The statistical evaluation of social network dynamics , 2001 .

[33]  P DeLellis,et al.  Synchronization and control of complex networks via contraction, adaptation and evolution , 2010, IEEE Circuits and Systems Magazine.

[34]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[35]  Petter Holme,et al.  Bursty Communication Patterns Facilitate Spreading in a Threshold-Based Epidemic Dynamics , 2012, PloS one.

[36]  C. Gilligan,et al.  Synergy in spreading processes: from exploitative to explorative foraging strategies. , 2011, Physical review letters.

[37]  V. Jansen,et al.  Modelling the influence of human behaviour on the spread of infectious diseases: a review , 2010, Journal of The Royal Society Interface.

[38]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[39]  James P. Gleeson,et al.  Cascades on clique-based graphs , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Deok-Sun Lee Synchronization transition in scale-free networks: clusters of synchrony. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Alessandro Vespignani,et al.  Random walks and search in time-varying networks. , 2012, Physical review letters.

[42]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[43]  Erik M. Bollt,et al.  Master stability functions for coupled nearly identical dynamical systems , 2008, 0811.0649.

[44]  M. Degroot Reaching a Consensus , 1974 .

[45]  Thilo Gross,et al.  Graphical notation reveals topological stability criteria for collective dynamics in complex networks. , 2010, Physical review letters.

[46]  Yaakov Stern,et al.  Investigating hemodynamic response variability at the group level using basis functions , 2009, NeuroImage.

[47]  Peter Sheridan Dodds,et al.  Universal behavior in a generalized model of contagion. , 2004, Physical review letters.

[48]  Laurent Hébert-Dufresne,et al.  Pathogen mutation modeled by competition between site and bond percolation. , 2013, Physical review letters.

[49]  A. Campa,et al.  Kuramoto model of synchronization: equilibrium and nonequilibrium aspects , 2014, 1403.2083.

[50]  R. Holley,et al.  Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model , 1975 .

[51]  James P. Gleeson,et al.  On Watts' cascade model with random link weights , 2012, J. Complex Networks.

[52]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[53]  Alessandro Vespignani,et al.  Controlling Contagion Processes in Time-Varying Networks , 2013, Physical review letters.

[54]  Raúl Toral,et al.  Simulating non-Markovian stochastic processes. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[56]  E. Schöll,et al.  Heterogeneous delays in neural networks , 2013, 1311.1919.

[57]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[58]  Tom A. B. Snijders,et al.  Introduction to stochastic actor-based models for network dynamics , 2010, Soc. Networks.

[59]  J. Gleeson,et al.  A Framework for Analyzing Contagion in Banking Networks , 2011, 1110.4312.

[60]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[61]  James P Gleeson,et al.  Cascades on correlated and modular random networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[63]  Emanuele Pugliese,et al.  Heterogeneous pair approximation for voter models on networks , 2009, 0903.5489.

[64]  L. Hébert-Dufresne,et al.  Adaptive networks: Coevolution of disease and topology. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  I. Kevrekidis,et al.  Coarse graining the dynamics of heterogeneous oscillators in networks with spectral gaps. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  M. Newman,et al.  Nonequilibrium phase transition in the coevolution of networks and opinions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  S N Dorogovtsev,et al.  Explosive percolation transition is actually continuous. , 2010, Physical review letters.

[68]  J. Gleeson,et al.  Seed size strongly affects cascades on random networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  L Chen,et al.  Predicting the synchronization time in coupled-map networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[71]  Derek de Solla Price,et al.  A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..

[72]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[73]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[74]  Pierre-André Noël,et al.  Controlling self-organizing dynamics on networks using models that self-organize. , 2013, Physical review letters.

[75]  Virgil D. Gligor,et al.  Analysis of complex contagions in random multiplex networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Nicolas Brunel,et al.  Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates , 1999, Neural Computation.

[77]  T. Ichinomiya Frequency synchronization in a random oscillator network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Peter Sheridan Dodds,et al.  Limited imitation contagion on random networks: chaos, universality, and unpredictability. , 2012, Physical review letters.

[79]  Rick Durrett,et al.  A multi-opinion evolving voter model with infinitely many phase transitions , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Ioannis G. Kevrekidis,et al.  An equation-free approach to coarse-graining the dynamics of networks , 2012, ArXiv.

[81]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[82]  Sergio Gómez,et al.  Spectral properties of the Laplacian of multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Ii. the Species-reactions Graph , 2022 .

[84]  Alessandro Vespignani Modelling dynamical processes in complex socio-technical systems , 2011, Nature Physics.

[85]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[86]  James P. Gleeson,et al.  An analytical approach to cascades on random networks , 2007, SPIE International Symposium on Fluctuations and Noise.

[87]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[88]  James P. Gleeson,et al.  Competition-induced criticality in a model of meme popularity , 2013, Physical review letters.

[89]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[90]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[91]  Istvan Z. Kiss,et al.  Interdependency and hierarchy of exact epidemic models on networks , 2012 .

[92]  B. Webb,et al.  Isospectral compression and other useful isospectral transformations of dynamical networks. , 2012, Chaos.

[93]  Filippo Menczer,et al.  Virality Prediction and Community Structure in Social Networks , 2013, Scientific Reports.

[94]  R. Durrett Random Graph Dynamics: References , 2006 .

[95]  Naoki Masuda,et al.  Temporal networks: slowing down diffusion by long lasting interactions , 2013, Physical review letters.

[96]  Oliver Riordan,et al.  Explosive Percolation Is Continuous , 2011, Science.

[97]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[98]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[99]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[100]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[101]  Joel C. Miller A note on a paper by Erik Volz: SIR dynamics in random networks , 2009, Journal of mathematical biology.

[102]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[103]  Nicholas A. Christakis,et al.  Social contagion theory: examining dynamic social networks and human behavior , 2011, Statistics in medicine.

[104]  B. Webb,et al.  Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks , 2010, 1010.3272.

[105]  Gade,et al.  Synchronous chaos in coupled map lattices with small-world interactions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  Rick Durrett,et al.  Some features of the spread of epidemics and information on a random graph , 2010, Proceedings of the National Academy of Sciences.

[107]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[108]  Alessandro Vespignani,et al.  The emergence and role of strong ties in time-varying communication networks , 2013, ArXiv.

[109]  R. Durrett,et al.  Graph fission in an evolving voter model , 2012, Proceedings of the National Academy of Sciences.

[110]  N. Christakis,et al.  The Spread of Obesity in a Large Social Network Over 32 Years , 2007, The New England journal of medicine.

[111]  Mason A Porter,et al.  Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  T. Gross,et al.  Moment-Closure Approximations for Discrete Adaptive Networks , 2012, 1211.0449.

[113]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[114]  Johnson,et al.  Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[115]  J. Spencer,et al.  Explosive Percolation in Random Networks , 2009, Science.

[116]  R. Pastor-Satorras,et al.  Activity driven modeling of time varying networks , 2012, Scientific Reports.

[117]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[118]  Bruce A. Desmarais,et al.  Statistical Mechanics of Networks: Estimation and Uncertainty Forthcoming: Physica A , 2012 .

[119]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[120]  Stefan Siegmund,et al.  Meso-scale obstructions to stability of 1D center manifolds for networks of coupled differential equations with symmetric Jacobian , 2012, Physica D: Nonlinear Phenomena.

[121]  A. Motter,et al.  Rescuing ecosystems from extinction cascades through compensatory perturbations. , 2011, Nature communications.

[122]  Derek Ruths,et al.  Control Profiles of Complex Networks , 2014, Science.

[123]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[124]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[125]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[126]  S. Kak Information, physics, and computation , 1996 .

[127]  S. Redner,et al.  Voter model on heterogeneous graphs. , 2004, Physical review letters.

[128]  Thilo Gross,et al.  Analytical calculation of fragmentation transitions in adaptive networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  Cristopher Moore,et al.  Stability Analysis of Financial Contagion Due to Overlapping Portfolios , 2012, ArXiv.

[130]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[131]  Sergey Melnik,et al.  Accuracy of mean-field theory for dynamics on real-world networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  Sergey N. Dorogovtsev,et al.  K-core Organization of Complex Networks , 2005, Physical review letters.

[133]  Adilson E Motter,et al.  Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions , 2009, Proceedings of the National Academy of Sciences.

[134]  J. Gleeson High-accuracy approximation of binary-state dynamics on networks. , 2011, Physical review letters.

[135]  J. Gómez-Gardeñes,et al.  From scale-free to Erdos-Rényi networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[136]  Frank M. Bass,et al.  A New Product Growth for Model Consumer Durables , 2004, Manag. Sci..

[137]  Martin Golubitsky,et al.  Bifurcations from Synchrony in Homogeneous Networks: Linear Theory , 2009, SIAM J. Appl. Dyn. Syst..

[138]  E. Ott,et al.  The effect of network topology on the stability of discrete state models of genetic control , 2009, Proceedings of the National Academy of Sciences.

[139]  Ling-Yun Wu,et al.  Structure and dynamics of core/periphery networks , 2013, J. Complex Networks.

[140]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[141]  Piet Van Mieghem,et al.  Exact Markovian SIR and SIS epidemics on networks and an upper bound for the epidemic threshold , 2014, 1402.1731.

[142]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[143]  Mason A. Porter,et al.  Social Structure of Facebook Networks , 2011, ArXiv.

[144]  Gerd Zschaler,et al.  Largenet2: an object-oriented programming library for simulating large adaptive networks , 2012, Bioinform..

[145]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[146]  A S Perelson,et al.  Modeling adaptive biological systems. , 1989, Bio Systems.

[147]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[148]  G. Grimmett What Is Percolation , 1989 .

[149]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  Takashi Ichinomiya Path-integral approach to dynamics in a sparse random network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[151]  Alexandre Arenas,et al.  Modeling self-sustained activity cascades in socio-technical networks , 2013, ArXiv.

[152]  Sang Hoon Lee,et al.  Exploring maps with greedy navigators , 2011, Physical review letters.

[153]  Alessandro Vespignani,et al.  Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions , 2007, PLoS medicine.

[154]  S. Redner,et al.  Constrained opinion dynamics: freezing and slow evolution , 2003 .

[155]  Cosma Rohilla Shalizi,et al.  Homophily and Contagion Are Generically Confounded in Observational Social Network Studies , 2010, Sociological methods & research.

[156]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[157]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[158]  Péter L. Simon,et al.  Dynamic Control of Modern, Network-Based Epidemic Models , 2014, SIAM J. Appl. Dyn. Syst..

[159]  Prasanna Gai,et al.  Contagion in financial networks , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[160]  Ginestra Bianconi,et al.  Percolation in multiplex networks with overlap. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[161]  O. Riordan,et al.  Achlioptas process phase transitions are continuous , 2011, 1102.5306.

[162]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[163]  G. Marwell,et al.  A Theory of the Critical Mass , 1991 .

[164]  Alessandro Vespignani,et al.  influenza A(H1N1): a Monte Carlo likelihood analysis based on , 2009 .

[165]  Sergio Gómez,et al.  Explosive synchronization transitions in scale-free networks. , 2011, Physical review letters.

[166]  Robert J. Smith Braaaiiinnnsss!: From Academics to Zombies , 2011 .

[167]  Mingzhou Ding,et al.  Enhancement of neural synchrony by time delay. , 2004, Physical review letters.

[168]  Mason A. Porter,et al.  A mathematical model for the dynamics and synchronization of cows , 2010, 1005.1381.

[169]  Adilson E. Motter,et al.  Networks in Motion , 2012, ArXiv.

[170]  Chun Wong,et al.  Modeling complex systems with adaptive networks , 2013, Comput. Math. Appl..

[171]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[172]  Mason A. Porter,et al.  Dynamics on Modular Networks with Heterogeneous Correlations , 2012, Chaos.

[173]  Tiago Pereira,et al.  Dynamics of Coupled Maps in Heterogeneous Random Networks , 2013 .

[174]  M. J. Oliveira,et al.  Isotropic majority-vote model on a square lattice , 1992 .

[175]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[176]  S. Strogatz Exploring complex networks , 2001, Nature.

[177]  R. Durrett,et al.  From individuals to epidemics. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[178]  Antoine Allard,et al.  Propagation on networks: an exact alternative perspective. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[179]  Thilo Gross,et al.  Epidemic dynamics on an adaptive network. , 2005, Physical review letters.

[180]  Tom A. B. Snijders,et al.  Exponential Random Graph Models for Social Networks , 2013 .

[181]  Mason A. Porter,et al.  Multi-Stage Complex Contagions , 2011, Chaos.

[182]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[183]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[184]  P. Olver Nonlinear Systems , 2013 .

[185]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[186]  Mason A. Porter,et al.  Random Walks on Stochastic Temporal Networks , 2013, ArXiv.

[187]  J. Gleeson Binary-state dynamics on complex networks: pair approximation and beyond , 2012, 1209.2983.