A density version of Cobham's theorem

Cobham's theorem asserts that if a sequence is automatic with respect to two multiplicatively independent bases, then it is ultimately periodic. We prove a stronger density version of the result: if two sequences which are automatic with respect to two multiplicatively independent bases coincide on a set of density one, then they also coincide on a set of density one with a periodic sequence. We apply the result to a problem of Deshouillers and Ruzsa concerning the least nonzero digit of $n!$ in base $12$.

[1]  Fabien Durand,et al.  A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.

[2]  J. Bell,et al.  A problem around Mahler functions , 2013, 1303.2019.

[3]  Gregory P. Dresden Three Transcendental Numbers from the Last Non-Zero Digits of nn, Fn, and n! , 2008 .

[4]  S. Fabre,et al.  Une généralisation du théorème de Cobham , 1994 .

[5]  Michel Rigo,et al.  A Note on Syndeticity, Recognizable Sets and Cobham's Theorem , 2009, Bull. EATCS.

[6]  J. Allouche Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence , 2014, 1401.3727.

[7]  Isabelle Fagnot,et al.  Sur les facteurs des mots automatiques , 1997, Theor. Comput. Sci..

[8]  Bernard Boigelot,et al.  A Generalization of Semenov's Theorem to Automata over Real Numbers , 2009, CADE.

[9]  J. Deshouillers A footnote to "The least non zero digit of n! In base 12" , 2012 .

[10]  Jeffrey Shallit,et al.  Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..

[11]  I. Ruzsa,et al.  The least nonzero digit of n! in base 12 , 2011 .

[12]  Alexis Bès Undecidable Extensions of Büchi Arithmetic and Cobham-Semënov Theorem , 1997, J. Symb. Log..

[13]  Benjamin J. Keele,et al.  Cambridge University Press v. Georgia State University , 2016 .

[14]  Wieb Bosma,et al.  On automatic subsets of the Gaussian integers , 2016, ArXiv.

[15]  Kevin G. Hare,et al.  A multi-dimensional analogue of Cobham’s theorem for fractals , 2013 .

[16]  A. L. Semenov,et al.  Presburgerness of predicates regular in two number systems , 1977 .

[17]  Michel Rigo,et al.  Syndeticity and independent substitutions , 2009, Adv. Appl. Math..

[18]  Tomi Kärki A Note on the Proof of Cobham ’ s Theorem , 2005 .

[19]  Shizuo Kakutani Ergodic theory of shift transformations , 1967 .

[20]  Roger Villemaire,et al.  Cobham's Ttheorem seen through Büchi's Theorem , 1993, ICALP.

[21]  Roger Villemaire,et al.  Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..

[22]  Véronique Bruyère,et al.  On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases , 2008, ICALP.

[23]  Jason P. Bell Séminaire Lotharingien de Combinatoire 54A (2006), Article B54Ap A GENERALIZATION OF COBHAM’S THEOREM FOR REGULAR SEQUENCES , 2022 .

[24]  Boris Adamczewski,et al.  Function fields in positive characteristic: Expansions and Cobham's theorem , 2008 .

[25]  Boris Adamczewski,et al.  An analogue of Cobham’s theorem for fractals , 2011 .

[26]  Bernard Boigelot,et al.  A generalization of Cobham's theorem to automata over real numbers , 2009, Theor. Comput. Sci..

[27]  Emilie Charlier,et al.  An analogue of Cobham's theorem for graph directed iterated function systems , 2013, 1310.0309.