暂无分享,去创建一个
[1] Fabien Durand,et al. A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.
[2] J. Bell,et al. A problem around Mahler functions , 2013, 1303.2019.
[3] Gregory P. Dresden. Three Transcendental Numbers from the Last Non-Zero Digits of nn, Fn, and n! , 2008 .
[4] S. Fabre,et al. Une généralisation du théorème de Cobham , 1994 .
[5] Michel Rigo,et al. A Note on Syndeticity, Recognizable Sets and Cobham's Theorem , 2009, Bull. EATCS.
[6] J. Allouche. Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence , 2014, 1401.3727.
[7] Isabelle Fagnot,et al. Sur les facteurs des mots automatiques , 1997, Theor. Comput. Sci..
[8] Bernard Boigelot,et al. A Generalization of Semenov's Theorem to Automata over Real Numbers , 2009, CADE.
[9] J. Deshouillers. A footnote to "The least non zero digit of n! In base 12" , 2012 .
[10] Jeffrey Shallit,et al. Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..
[11] I. Ruzsa,et al. The least nonzero digit of n! in base 12 , 2011 .
[12] Alexis Bès. Undecidable Extensions of Büchi Arithmetic and Cobham-Semënov Theorem , 1997, J. Symb. Log..
[13] Benjamin J. Keele,et al. Cambridge University Press v. Georgia State University , 2016 .
[14] Wieb Bosma,et al. On automatic subsets of the Gaussian integers , 2016, ArXiv.
[15] Kevin G. Hare,et al. A multi-dimensional analogue of Cobham’s theorem for fractals , 2013 .
[16] A. L. Semenov,et al. Presburgerness of predicates regular in two number systems , 1977 .
[17] Michel Rigo,et al. Syndeticity and independent substitutions , 2009, Adv. Appl. Math..
[18] Tomi Kärki. A Note on the Proof of Cobham ’ s Theorem , 2005 .
[19] Shizuo Kakutani. Ergodic theory of shift transformations , 1967 .
[20] Roger Villemaire,et al. Cobham's Ttheorem seen through Büchi's Theorem , 1993, ICALP.
[21] Roger Villemaire,et al. Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..
[22] Véronique Bruyère,et al. On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases , 2008, ICALP.
[23] Jason P. Bell. Séminaire Lotharingien de Combinatoire 54A (2006), Article B54Ap A GENERALIZATION OF COBHAM’S THEOREM FOR REGULAR SEQUENCES , 2022 .
[24] Boris Adamczewski,et al. Function fields in positive characteristic: Expansions and Cobham's theorem , 2008 .
[25] Boris Adamczewski,et al. An analogue of Cobham’s theorem for fractals , 2011 .
[26] Bernard Boigelot,et al. A generalization of Cobham's theorem to automata over real numbers , 2009, Theor. Comput. Sci..
[27] Emilie Charlier,et al. An analogue of Cobham's theorem for graph directed iterated function systems , 2013, 1310.0309.