A unifying treatise of variational principles for two types of micropolar continua

SummaryThe objective of this work is to elaborate upon the variational setting for micropolar continua withconstrained andunconstrained rotations. To this end, several mixed variational principles and their regularizations are considered for both the geometrically linear and nonlinear case. The interrelation between the different formulations are highlighted. The most advantageous result is obtained by translating the insight gained for the geometrically linear case to the geometrically nonlinear case involving large strains and large rotations. It turns out that a particular micropolar description involves standard constitutive models for the symmetric stress part together with a nonsymmetric penalty stress thus circumventing to describe the constitutive law in terms of a nonsymmetric strain measure.

[1]  H. Schaefer,et al.  Das Cosserat Kontinuum , 1967 .

[2]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[3]  W. T. Koiter COUPLE-STRESSES IN THE THEORY OF ELASTICITY, I & II , 1969 .

[4]  R. Borst,et al.  Finite Deformation Analysis of Inelastic Materials with Micro-Structure , 1992 .

[5]  W. Guenther,et al.  Zur Statik und Kinematik des Cosseratschen Kontinuums , 1958 .

[6]  P. Steinmann A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity , 1994 .

[7]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[8]  Hans Muhlhaus,et al.  Application of Cosserat theory in numerical solutions of limit load problems , 1989 .

[9]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[10]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[11]  Thomas J. R. Hughes,et al.  Formulations of finite elasticity with independent rotations , 1992 .

[12]  H. Neuber Über Probleme der Spannungskonzentration im Cosserat-Körper , 1966 .

[13]  K. Willam,et al.  Localization within the Framework of Micropolar Elasto-Plasticity , 1991 .

[14]  R. D. Mindlin MICROSTRUCTURE IN LINEAR ELASTICITY , 1999 .

[15]  H. Lippmann Eine Cosserat-Theorie des plastischen Flie\ens , 1969 .

[16]  Paul Steinmann,et al.  Micropolar elastoplasticity and its role in localization , 1993 .

[17]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[18]  F. Brezzi,et al.  On drilling degrees of freedom , 1989 .

[19]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[20]  D. Besdo Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums , 1974 .

[21]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[22]  René de Borst,et al.  A generalisation of J 2 -flow theory for polar continua , 1993 .

[23]  C. Wang On representations for isotropic functions , 1969 .

[24]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[25]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[26]  Paul Steinmann,et al.  Micropolar Elasto-Plasticity and Its Role in Localization Analysis , 1991 .

[27]  R. Toupin Elastic materials with couple-stresses , 1962 .

[28]  C. Wang On representations for isotropic functions: Part I. Isotropic functions of symmetric tensors and vectors , 1969 .

[29]  J. C. Simo,et al.  Variational and projection methods for the volume constraint in finite deformation elasto-plasticity , 1985 .

[30]  H. Lippmann,et al.  Rotationssymmetrisches ebenes Fließen eines granularen Modellmaterials , 1975 .

[31]  The cosserat continuum, a model for grain rotations in metals? , 1991 .

[32]  A. Cemal Eringen,et al.  Theory of Micropolar Elasticity , 1999 .