A Technique for Enhancing Varactor’s Quality Factor in Millimeter-Wave Frequencies

Varactors are key devices in the design of voltage-controlled oscillators (VCOs), as their quality factor (<inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-factor) at the millimeter-wave frequency range limits the overall LC tank <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-factor. This brief presents a new circuit-level structure, called <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-enhanced varactor (QEV), that is composed of two metal-insulator-metal capacitors (MIMCAPs) and a varactor. Depending on <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-factors and the values of the MIMCAPs, the <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-factor in QEV can be improved more than two times. The QEV parameters are analyzed and a design procedure for QEV is proposed. Also, a QEV with two times <inline-formula> <tex-math notation="LaTeX">${Q}$ </tex-math></inline-formula>-factor improvement is employed in the design of a 40-GHz LC-VCO, illustrating more than 6-dB enhancement in the oscillator figure of merit.

[1]  Aydin Babakhani,et al.  A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing , 2013, IEEE Journal of Solid-State Circuits.

[2]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[3]  T. Melly,et al.  Design of high-Q varactors for low-power wireless applications using a standard CMOS process , 2000, IEEE Journal of Solid-State Circuits.

[4]  Haifeng Xu,et al.  High-$Q$ Thick-Gate-Oxide MOS Varactors With Subdesign-Rule Channel Lengths for Millimeter-Wave Applications , 2008, IEEE Electron Device Letters.

[5]  Behzad Razavi Design of HighQ Varactors for LowPower Wireless Applications Using a Standard CMOS Process , 2003 .

[6]  C. Gaquiere,et al.  High Frequency Characterization of Compact N+Poly/Nwell Varactor Using Waffle-Layout , 2008, 2008 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[7]  Jae-Sung Rieh,et al.  A Comprehensive Study of High- $Q$ Island-Gate Varactors (IGVs) for CMOS Millimeter-Wave Applications , 2011, IEEE Transactions on Microwave Theory and Techniques.

[8]  J. del Pino,et al.  Influence of gate geometry in integrated MOS varactors on accumulation mode for RF , 2007, 2007 Spanish Conference on Electron Devices.

[9]  Enrico Monaco,et al.  A 33.6-to-46.2GHz 32nm CMOS VCO with 177.5dBc/Hz minimum noise FOM using inductor splitting for tuning extension , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[10]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[11]  Yi-Jen Chan,et al.  0.13-/spl mu/m RF CMOS and varactors performance optimization by multiple gate layouts , 2004, IEEE Transactions on Electron Devices.

[12]  Ching-Yi Chen,et al.  Analysis and Design of a Wide-Tuning-Range VCO With Quadrature Outputs , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Hao Yu,et al.  A 96-GHz Oscillator by High-$Q$ Differential Transmission Line loaded with Complementary Split-Ring Resonator in 65-nm CMOS , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  K. O. Kenneth,et al.  Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology , 2006, IEEE J. Solid State Circuits.

[15]  Howard C. Luong,et al.  A 57.5–90.1-GHz Magnetically Tuned Multimode CMOS VCO , 2013, IEEE Journal of Solid-State Circuits.

[16]  K. O. Kenneth,et al.  Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology , 2006, IEEE J. Solid State Circuits.

[17]  Daniel Gloria,et al.  High-Q MOS Varactors for Millimeter-Wave Applications in CMOS 28-nm FDSOI , 2015, IEEE Electron Device Letters.

[18]  Howard C. Luong,et al.  Transformer-based dual-band VCO and ILFD for wide-band mm-Wave LO generation , 2013, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.