Experimental evaluation of LED-based solar blind NLOS communication links.

Experimental results are reported demonstrating non-line of sight short-range ultraviolet communication link losses, and performance of photon counting detectors, operating in the solar blind spectrum regime. We employ light emitting diodes with divergent beams, a solar blind filter, and a wide field-of-view detector. Signal and noise statistics are characterized, and receiver performance is demonstrated. The effects of transmitter and receiver elevation angles, separation distance, and path loss are included.

[1]  Brian M. Sadler,et al.  Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. , 2008, Optics letters.

[2]  Brian M. Sadler,et al.  Ultraviolet Communications: Potential and State-Of-The-Art , 2008, IEEE Communications Magazine.

[3]  Xiaogang Bai,et al.  Ultraviolet Single Photon Detection With Geiger-Mode 4H-SiC Avalanche Photodiodes , 2007, IEEE Photonics Technology Letters.

[4]  R. Dupuis,et al.  Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD , 2007, IEEE Photonics Technology Letters.

[5]  Zhengyuan Xu,et al.  Experimental performance evaluation of non-line-of-sight ultraviolet communication systems , 2007, SPIE Optical Engineering + Applications.

[6]  Tomoaki Ohashi,et al.  231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire , 2007 .

[7]  Asif Khan,et al.  Robust 285 nm Deep UV Light Emitting Diodes over Metal Organic Hydride Vapor Phase Epitaxially Grown AlN/Sapphire Templates , 2007 .

[8]  AlxGa1−xN-based avalanche photodiodes with high reproducible avalanche gain , 2007 .

[9]  J. Campbell,et al.  Demonstration of Ultraviolet 6H-SiC PIN Avalanche Photodiodes , 2006, IEEE Photonics Technology Letters.

[10]  B. Corbett,et al.  Determination of Internal Loss and Quasi-Fermi Level Separation From the Amplified Spontaneous Emission Spectrum of Fabry–PÉrot Semiconductor Lasers , 2006, IEEE Photonics Technology Letters.

[11]  Michael Wraback,et al.  GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition , 2006 .

[12]  Gary A. Shaw,et al.  Extending the range and performance of non-line-of-sight ultraviolet communication links , 2006, SPIE Defense + Commercial Sensing.

[13]  J.C. Campbell,et al.  Demonstration of ultraviolet separate absorption and multiplication 4H-SiC avalanche photodiodes , 2006, IEEE Photonics Technology Letters.

[14]  Gary A. Shaw,et al.  Recent progress in short-range ultraviolet communication , 2005, SPIE Defense + Commercial Sensing.

[15]  Manijeh Razeghi Deep ultraviolet light-emitting diodes and photodetectors for UV communications , 2005, SPIE OPTO.

[16]  Daniel T. Moriarty,et al.  Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks , 2004, SPIE Security + Defence.

[17]  S. Aslam,et al.  4H-SiC UV photo detectors with large area and very high specific detectivity , 2004, IEEE Journal of Quantum Electronics.

[18]  Gary A. Shaw,et al.  Demonstration system and applications for compact wireless ultraviolet communications , 2003, SPIE Defense + Commercial Sensing.

[19]  Gary A. Shaw,et al.  Collaborative sensing test bed and experiments , 2003, SPIE Defense + Commercial Sensing.

[20]  Grigory Simin,et al.  Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells , 2002 .

[21]  Gary A. Shaw,et al.  Short-range NLOS ultraviolet communication testbed and measurements , 2001, SPIE Defense + Commercial Sensing.

[22]  Gary A. Shaw,et al.  NLOS UV communication for distributed sensor systems , 2000, SPIE Optics + Photonics.

[23]  R. D. Shute Electrodeless ultraviolet communications system , 1995 .

[24]  Barry Charles,et al.  Ultraviolet laser-based communication system for short-range tactical applications , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[25]  Jeffrey H. Shapiro,et al.  Non-line-of-sight single-scatter propagation model , 1991 .

[26]  J. J. Puschell,et al.  High data rate ultraviolet communication systems for the tactical battlefield , 1990, Conference Proceedings on Tactical Communications, Vol.1..

[27]  Cardinal Warde,et al.  Temporal characteristics of single-scatter radiation , 1979 .

[28]  David Monroe Reilly Atmospheric optical communications in the middle ultraviolet. , 1976 .

[29]  D. E. Sunstein,et al.  A scatter communications link at ultraviolet frequencies. , 1968 .

[30]  J. A. Sanderson Optics at the naval research laboratory. , 1967, Applied optics.

[31]  G. L. Harvey A SURVEY OF ULTRAVIOLET COMMUNICATION SYSTEMS , 1964 .