Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays

[1]  M. Bruel,et al.  Smart-Cut : a new silicon on insulator material technology based on hydrogen implantation and wafer bonding . Smart-Cut : A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding , 2018 .

[2]  R. Brendel,et al.  4.5 ms Effective Carrier Lifetime in Kerfless Epitaxial Silicon Wafers From the Porous Silicon Process , 2017, IEEE Journal of Photovoltaics.

[3]  C. Ballif,et al.  Amorphous and Nanocrystalline Silicon Solar Cells , 2017 .

[4]  Honglie Shen,et al.  Efficient light trapping of quasi-inverted nanopyramids in ultrathin c-Si through a cost-effective wet chemical method , 2016 .

[5]  Jiasen Zhang,et al.  Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays , 2016, Scientific Reports.

[6]  R. Russell,et al.  Kerfless Epitaxial Mono Crystalline Si Wafers With Built-In Junction and From Reused Substrates for High-Efficiency PERx Cells , 2016, IEEE Journal of Photovoltaics.

[7]  Doo Seok Jeong,et al.  Random Si nanopillars for broadband antireflection in crystalline silicon solar cells , 2016 .

[8]  J. Benick,et al.  Solar Cells with 20% Efficiency and Lifetime Evaluation of Epitaxial Wafers☆ , 2016 .

[9]  A. Rohatgi,et al.  Development of high‐efficiency large‐area screen‐printed solar cells on direct kerfless epitaxially grown monocrystalline Si wafer and structure , 2016 .

[10]  R. Brendel,et al.  Lifetime Analysis for Defect Characterization in Kerfless Epitaxial Silicon from the Porous Silicon Process , 2016 .

[11]  Doo Seok Jeong,et al.  Silicon nanodisk array design for effective light trapping in ultrathin c-Si. , 2014, Optics express.

[12]  B. Hoex,et al.  Black silicon: fabrication methods, properties and solar energy applications , 2014 .

[13]  Dong-Wook Kim,et al.  Wafer-scale nanoconical frustum array crystalline silicon solar cells: promising candidates for ultrathin device applications. , 2014, Nanoscale.

[14]  A. Rohatgi,et al.  High efficiency solar cells on direct kerfless 156 mm mono crystalline Si wafers by high throughput epitaxial growth , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[15]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.

[16]  Han-Don Um,et al.  Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping , 2013 .

[17]  A. Papon,et al.  Fracture in (100)Si after high energy protons implantation , 2012 .

[18]  Marc Meuris,et al.  Crystalline thin‐foil silicon solar cells: where crystalline quality meets thin‐film processing , 2012 .

[19]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[20]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[21]  Mool C. Gupta,et al.  Efficient light trapping in silicon solar cells by ultrafast‐laser‐induced self‐assembled micro/nano structures , 2011 .

[22]  Gwonjong Yu,et al.  Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE) , 2011 .

[23]  Francois Henley,et al.  Beam-induced wafering technology for kerf-free thin PV manufacturing , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[24]  Y. Mai,et al.  Fracture mechanics analysis on Smart-Cut® technology. Part 1: Effects of stiffening wafer and defect interaction , 2009 .

[25]  P. Bouchard,et al.  Stress-Induced Lift-Off Method for kerf-loss-free wafering of ultra-thin (∼50 μm) crystalline Si wafers , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[26]  Y. Mai,et al.  Fracture Mechanics Analysis on Smart-Cut® Technology: Effects of Stiffening Wafer and Defect Interaction , 2008 .

[27]  Hyung-Joo Woo,et al.  Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process , 2006 .

[28]  W. Sinke,et al.  Alkaline Etching for Reflectance Reduction in Multicrystalline Silicon Solar Cells , 2004 .

[29]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[30]  Gerhard Willeke,et al.  Thin crystalline silicon solar cells , 2002 .

[31]  Tobias Franz Hochbauer On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage , 2001 .

[32]  B. Ghyselen,et al.  The generic nature of the Smart-Cut® process for thin film transfer , 2001 .

[33]  M. Nastasi,et al.  Investigation of the cut location in hydrogen implantation induced silicon surface layer exfoliation , 2001 .

[34]  Amit Misra,et al.  Hydrogen-implantation induced silicon surface layer exfoliation , 2000 .

[35]  G. Rozgonyi,et al.  Impurity gettering to secondary defects created by MeV ion implantation in silicon , 1998 .

[36]  M. Bruel,et al.  Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding*1 , 1997 .

[37]  M. Bruel Silicon on insulator material technology , 1995 .

[38]  P. Campbell,et al.  Light trapping in textured solar cells , 1990 .

[39]  E. Weber,et al.  A systematic analysis of defects in ion-implanted silicon , 1988 .

[40]  M.B. Ketchen,et al.  An advanced high-performance trench-isolated self-aligned bipolar technology , 1987, IEEE Transactions on Electron Devices.

[41]  Masao Tamura,et al.  Depth distribution of secondary defects in 2‐MeV boron‐implanted silicon , 1986 .