State-of-the-art of R&D on seawater desalination technology

Fresh water deficit has been an increasingly critical global environmental issue, and seawater desalination is considered as the most effective and promising solution, which promotes the development of different desalination technologies. In order to provide a comprehensive knowledge about the development of desalination technologies, state-of-the-art of research and development on the application of desalination technologies is reviewed in this paper. At first, the overview of desalination technologies is briefly introduced, including the definition of desalination, the evaluation index of water quality and the resulting classification of water resources, the overview of desalination industry, the usages of freshwater produced by desalination, and the sources of raw water. Besides, conventional desalination methods are categorized into physical method and chemical method according to whether there is new substance generated in the desalination process. In the following section conventional desalination methods are reviewed from the perspectives of basic processes and principles, the performances and technical characteristics. However, the shortcomings of conventional desalination technologies mainly lie in high energy consumption and complex treatment process, such as the decrease of heat transfer coefficient caused by the scaling and fouling generated on the solid heat transfer walls for multi-stage flash (MSF) and multiple effect distillation (MED), and rigorous pre-treatment and low recovery factor for reverse osmosis (RO). With the aims of overcoming these disadvantages and thus decreasing the energy consumption, different improvements have been put forward and new desalination methods have been developed. Therefore, the development of desalination technology is then exhaustively analyzed and forecasted in the following four aspects: improvement for the existing technology, combination of different technologies, desalination technology in combination with new energy, and development of new desalination technologies utilizing unemployed physical phenomena. The improvements mainly focus on the shortcomings of MSF, MED and RO, which are the current major large-scale industrial desalination technologies. The combination of different technologies can integrate their respective advantages to improve the desalination performance and decrease the energy consumption and the cost. The limitations of the decrease of traditional fossil energy and its increasing cost can be broken through the combination with solar, wind, geothermal, ocean and nuclear energies, which is also regarded as a potential solution for climate change. The newly developed desalination technologies have the advantages of lower energy consumption and cost, but most of which are still in lab-scale and need further improvement. Due to the important role in the assessment of the desalination efficient, special attention is paid to the analysis of energy consumption of each desalination technology.

[1]  N. Loader Improving , 2018, The Lean IT Expert.

[2]  Jianhua Zhang,et al.  Study on the heat and mass transfer in air-bubbling enhanced vacuum membrane distillation , 2015 .

[3]  E. Izake,et al.  Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent: Effect of polymer conformation , 2015 .

[4]  Syed Noman Danish,et al.  Theoretical calculation simulation studies of ABV nuclear reactor coupled with desalination system , 2015 .

[5]  Volker Presser,et al.  Water desalination via capacitive deionization : What is it and what can we expect from it? , 2015 .

[6]  T. Mohammadi,et al.  Analysis of heat and mass transfer in vacuum membrane distillation for water desalination using computational fluid dynamics (CFD) , 2015 .

[7]  S. Ji,et al.  Review of thermal efficiency and heat recycling in membrane distillation processes , 2015 .

[8]  Chia-Hung Hou,et al.  Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. , 2015 .

[9]  S. Hasan,et al.  Recent applications of nanomaterials in water desalination: A critical review and future opportunities , 2015 .

[10]  Yang Wang,et al.  Stand-alone seawater RO (reverse osmosis) desalination powered by PV (photovoltaic) and PRO (pressure retarded osmosis) , 2015 .

[11]  Andrea F. Corral,et al.  Sweeping gas membrane distillation: Numerical simulation of mass and heat transfer in a hollow fiber membrane module , 2015 .

[12]  Hassan A. Arafat,et al.  Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy , 2015 .

[13]  W. J. Groot,et al.  Cost evaluation of large-scale membrane capacitive deionization for biomass hydrolysate desalination , 2015 .

[14]  Xin Gao,et al.  Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs. , 2015, Journal of colloid and interface science.

[15]  S. O. Odu,et al.  Design of a Process for Supercritical Water Desalination with Zero Liquid Discharge , 2015 .

[16]  June-Seok Choi,et al.  Theoretical analysis of different membrane distillation modules , 2015 .

[17]  Sangho Lee,et al.  Effect of operating parameters on temperature and concentration polarization in vacuum membrane distillation process , 2015 .

[18]  Zhi-Ying Zheng,et al.  Numerical study on the characteristics of natural supercavitation by planar symmetric wedge-shaped cavitators for rotational supercavitating evaporator , 2015, Science China Technological Sciences.

[19]  Xueming Chen,et al.  Membrane-free electrodeionization using strong-type resins for high purity water production , 2015 .

[20]  Mohammed Al Abri,et al.  Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes , 2015 .

[21]  Khalil Abdelrazek Khalil,et al.  TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization , 2015 .

[22]  Yue Wang,et al.  Analysis, experiment and application of a power-saving actuator applied in the piston type energy recovery device , 2015 .

[23]  Jeong Ik Lee,et al.  Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND) , 2015 .

[24]  Daniel M. Kammen,et al.  Assessing the impacts of nuclear desalination and geoengineering to address China's water shortages , 2015 .

[25]  Noreddine Ghaffour,et al.  Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane , 2015 .

[26]  Y. Liu,et al.  Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization , 2015 .

[27]  Ingmar Nopens,et al.  Modelling approaches in membrane distillation: A critical review , 2015 .

[28]  Tasnim Firdaus Mohamed Ariff,et al.  Channeled coolant plate: A new method to enhance freshwater production from an air gap membrane distillation (AGMD) desalination unit , 2015 .

[29]  Jianhua Zhang,et al.  Condensation, re-evaporation and associated heat transfer in membrane evaporation and sweeping gas membrane distillation , 2015 .

[30]  Ibrahim Dincer,et al.  Performance Assessment of a Novel Solar and Ocean Thermal Energy Conversion Based Multigeneration System for Coastal Areas , 2015 .

[31]  Yong Liu,et al.  Review on carbon-based composite materials for capacitive deionization , 2015 .

[32]  Tian C. Zhang,et al.  Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis , 2015 .

[33]  T. Mohammadi,et al.  Simulation of momentum, heat and mass transfer in direct contact membrane distillation: A computational fluid dynamics approach , 2015 .

[34]  Vladimir A. Kulagin,et al.  Numerical simulation of the temperature effects on the performance of rotational supercavitating evaporator , 2015 .

[35]  Enrico Drioli,et al.  Membrane distillation: Recent developments and perspectives , 2015 .

[36]  Vladimir A. Kulagin,et al.  Numerical simulation research on the optimization for blade shape of rotational supercavitating evaporator , 2015 .

[37]  Jay R. Werber,et al.  Forward osmosis: Where are we now? , 2015 .

[38]  Huanlin Chen,et al.  A comprehensive review of vacuum membrane distillation technique , 2015 .

[39]  I. Mujtaba,et al.  Simulation of Vacuum Membrane Distillation Process for Desalination with Aspen Plus , 2015 .

[40]  Qingfeng He,et al.  Modeling and optimization of air gap membrane distillation system for desalination , 2014 .

[41]  Hong Yang,et al.  Improving desalination by coupling membrane capacitive deionization with microbial desalination cell , 2014 .

[42]  I. Khamis,et al.  Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel , 2014 .

[43]  Y. Ikegami,et al.  Design Optimization of Shore-Based Low Temperature Thermal Desalination System Utilizing the Ocean Thermal Energy , 2014 .

[44]  Vladimir A. Kulagin,et al.  Experimental study on the performance of a rotational supercavitating evaporator for desalination , 2014, Science China Technological Sciences.

[45]  Markus M.M. Ylänen,et al.  Determining optimal operating pressure for AaltoRO - A novel wave powered desalination system , 2014 .

[46]  Seockheon Lee,et al.  Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis , 2014 .

[47]  Torleiv Bilstad,et al.  Wind-powered RO desalination , 2014 .

[48]  Nasser A.M. Barakat,et al.  Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology , 2014 .

[49]  L. Rietveld,et al.  Forward osmosis for application in wastewater treatment: a review. , 2014, Water research.

[50]  Aicheng Chen,et al.  Electrodeionization: Principles, Strategies and Applications , 2014 .

[51]  Xu Cao,et al.  Theoretical analysis of a reverse osmosis desalination system driven by solar-powered organic Rankine cycle and wind energy , 2014 .

[52]  M. Yüksel,et al.  Various applications of electrodeionization (EDI) method for water treatment—A short review , 2014 .

[53]  Nidal Hilal,et al.  Application of Capacitive Deionisation in water desalination: A review , 2014 .

[54]  Zhuo Sun,et al.  Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes , 2014 .

[55]  R. Crooks,et al.  Electrochemical Desalination for a Sustainable Water Future , 2014 .

[56]  D. T. Ingersoll,et al.  NuScale small modular reactor for Co-generation of electricity and water , 2014 .

[57]  L. Pan,et al.  Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance , 2014 .

[58]  A. K. Adak,et al.  Technical feasibility study for coupling a desalination plant to an Advanced Heavy Water Reactor , 2014 .

[59]  Seeram Ramakrishna,et al.  Carbon nanotube membranes for water purification: A bright future in water desalination , 2014 .

[60]  A. Al-Garni Effect of External Reflectors on the Productivity of a Solar Still During Winter , 2014 .

[61]  Feng-Chen Li,et al.  Modeling of rotational supercavitating evaporator and the geometrical characteristics of supercavity within , 2014 .

[62]  Shichang Xu,et al.  Development and stand tests of reciprocating-switcher energy recovery device for SWRO desalination system , 2014 .

[63]  M. Boumaza,et al.  Techno-economic feasibility of wind-powered reverse osmosis brackish water desalination systems in southern Algeria , 2014 .

[64]  M. Webber,et al.  Implementation of Brackish Groundwater Desalination Using Wind-Generated Electricity: A Case Study of the Energy-Water Nexus in Texas , 2014 .

[65]  Haoyun Wu,et al.  Study on a new air-gap membrane distillation module for desalination , 2014 .

[66]  Bill Bornak Desalination by Ion Exchange , 2014 .

[67]  M. Rahman,et al.  Freezing-Melting Desalination Process , 2014 .

[68]  Anthony G. Fane,et al.  Membrane Distillation: Now and Future , 2014 .

[69]  Kevin E. Lindsay,et al.  Effects of wind and choice of cover material on the yield of a passive solar still , 2014 .

[70]  D. Sinton,et al.  Out-of-plane ion concentration polarization for scalable water desalination. , 2014, Lab on a chip.

[71]  Stan Z. Li,et al.  A new enhancement technique on air gap membrane distillation , 2014 .

[72]  P. M. Biesheuvel,et al.  Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis , 2013 .

[73]  Hong-Jin Joo,et al.  Performance evaluation of multi-effect distiller for optimized solar thermal desalination , 2013 .

[74]  Hamza Bouguettaia,et al.  Effect of absorber coating on the performance of a solar still in the region of Ouargla (Algeria) , 2013 .

[75]  Esmail M. A. Mokheimer,et al.  Modeling and optimization of hybrid wind–solar-powered reverse osmosis water desalination system in Saudi Arabia , 2013 .

[76]  Xianmao Lu,et al.  Thermoresponsive magnetic nanoparticles for seawater desalination. , 2013, ACS applied materials & interfaces.

[77]  Dan Li,et al.  Smart draw agents for emerging forward osmosis application , 2013 .

[78]  Noreddine Ghaffour,et al.  Modeling of air-gap membrane distillation process: A theoretical and experimental study , 2013 .

[79]  Volker Presser,et al.  Review on the science and technology of water desalination by capacitive deionization , 2013 .

[80]  Z. M. Omara,et al.  Hybrid of solar dish concentrator, new boiler and simple solar collector for brackish water desalination , 2013 .

[81]  Liyi Shi,et al.  Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization , 2013 .

[82]  S. H. Kim,et al.  Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination , 2013 .

[83]  Bumsuk Jung,et al.  Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis , 2013 .

[84]  S. H. Kim,et al.  Nanocomposite poly(arylene ether sulfone) reverse osmosis membrane containing functional zeolite nanoparticles for seawater desalination , 2013 .

[85]  Wei Wang,et al.  Nanofluidic water desalination by Nafion-induced ion concentration polarization , 2013, 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013).

[86]  Robbyn K. Anand,et al.  Electrochemically mediated seawater desalination. , 2013, Angewandte Chemie.

[87]  Chii-Dong Ho,et al.  Performance improvement of countercurrent-flow direct contact membrane distillation in seawater desalination systems , 2013 .

[88]  I. Khamis,et al.  Nuclear desalination: Practical measures to prevent pathways of contamination , 2013 .

[89]  I. Khamis,et al.  DE-TOP: A new IAEA tool for the thermodynamic evaluation of nuclear desalination , 2013 .

[90]  Hassan E.S. Fath,et al.  Optimal design of a hybrid solar-wind power to drive a small-size reverse osmosis desalination plant , 2013 .

[91]  Peng Liang,et al.  Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. , 2013, Water research.

[92]  Thirugnanasambantham Arunkumar,et al.  The augmentation of distillate yield by using concentrator coupled solar still with phase change material , 2013 .

[93]  M. Buonomenna Nano-enhanced reverse osmosis membranes , 2013 .

[94]  S. Shanmugan,et al.  Wick type solar stills: A review , 2013 .

[95]  P. M. Biesheuvel,et al.  Optimization of salt adsorption rate in membrane capacitive deionization. , 2013, Water research.

[96]  M. Kitis,et al.  Removal of boron from geothermal water by RO system-I—Effect of membrane configuration and applied pressure , 2013 .

[97]  M. Yüksel,et al.  Removal of boron from geothermal water by RO System-III-Utilization of SWRO system , 2013 .

[98]  Julián Blanco,et al.  Evaluation of cooling technologies of concentrated solar power plants and their combination with desalination in the mediterranean area , 2013 .

[99]  Bryce S. Richards,et al.  Renewable energy powered membrane technology: Supercapacitors for buffering resource fluctuations in a wind-powered membrane system for brackish water desalination , 2013 .

[100]  Eftihia Tzen,et al.  Wind desalination for the Island of Mykonos in Greece: a case study , 2013 .

[101]  K. Ng,et al.  Performance investigation of a solar-assisted direct contact membrane distillation system , 2013 .

[102]  Qammer Zaib,et al.  Application of carbon nano-materials in desalination processes , 2013 .

[103]  Ahmad Fauzi Ismail,et al.  Carbon nanotubes for desalination: Performance evaluation and current hurdles , 2013 .

[104]  A. Ghosh,et al.  Separation performance and interfacial properties of nanocomposite reverse osmosis membranes , 2013 .

[105]  Mohamed Khayet,et al.  Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review) , 2013 .

[106]  M. Qtaishat,et al.  Desalination by solar powered membrane distillation systems , 2013 .

[107]  Ali Kargari,et al.  Direct contact membrane distillation for seawater desalination , 2012 .

[108]  Zhaocheng Wang,et al.  Pilot tests of fluid-switcher energy recovery device for seawater reverse osmosis desalination system , 2012 .

[109]  Francisco Javier Abad Garrido,et al.  Process of desalination of low energy consumption. Energy + magnetohydrodynamics (E + MHD) desalination process , 2012 .

[110]  Sung Jae Kim,et al.  A portable and high energy efficient desalination/purification system by ion concentration polarization , 2012, Other Conferences.

[111]  P. M. Biesheuvel,et al.  Energy consumption and constant current operation in membrane capacitive deionization , 2012 .

[112]  R. C. Bindal,et al.  Carbon nanotube membranes for desalination and water purification: Challenges and opportunities , 2012 .

[113]  Hee Cheon No,et al.  Thermal coupling of HTGRs and MED desalination plants, and its performance and cost analysis for nuclear desalination , 2012 .

[114]  B. Freeman,et al.  A bioinspired fouling-resistant surface modification for water purification membranes , 2012 .

[115]  Philippe Moulin,et al.  Eausmose project: Desalination by reverse osmosis and batteryless solar energy: design for a 1m3 per day delivery , 2012 .

[116]  Hassan A. Arafat,et al.  Economic evaluation of stand-alone solar powered membrane distillation systems , 2012 .

[117]  Wenxiang Zheng,et al.  Investigation on three seawater desalination processes coupled with NHR-200 , 2012 .

[118]  S. Azari,et al.  Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance , 2012 .

[119]  Stephen K. Gray,et al.  Effectiveness of desalination powered by a tracking solar array to treat saline bore water , 2012 .

[120]  Laura Chekli,et al.  A review of draw solutes in forward osmosis process and their use in modern applications , 2012 .

[121]  Somenath Mitra,et al.  Carbon nanotube enhanced membrane distillation for simultaneous generation of pure water and concentrating pharmaceutical waste , 2012 .

[122]  Linda Zou,et al.  Recent developments in forward osmosis : opportunities and challenges. , 2012 .

[123]  Jincai Su,et al.  Exploration of polyelectrolytes as draw solutes in forward osmosis processes. , 2012, Water research.

[124]  Liyi Shi,et al.  High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization , 2012 .

[125]  Guodong Kang,et al.  Development of antifouling reverse osmosis membranes for water treatment: A review. , 2012, Water research.

[126]  Kiran A. Kekre,et al.  Recent developments and future challenges of forward osmosis for desalination: a review , 2012 .

[127]  N. Hilal,et al.  Membrane distillation: A comprehensive review , 2012 .

[128]  Ahmad Fauzi Ismail,et al.  Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane—Current development, challenges and future prospects , 2012 .

[129]  Mohamed Khayet,et al.  Modeling and optimization of sweeping gas membrane distillation , 2012 .

[130]  Tai-Shung Chung,et al.  Forward osmosis processes: Yesterday, today and tomorrow , 2012 .

[131]  Mohamed Khayet,et al.  Air gap membrane distillation: Desalination, modeling and optimization , 2012 .

[132]  Gonzalo Guillén-Gosálbez,et al.  Multi-objective optimization of solar Rankine cycles coupled with reverse osmosis desalination considering economic and life cycle environmental concerns , 2012 .

[133]  Hsuan Chang,et al.  Experimental and simulation study of a solar thermal driven membrane distillation desalination process , 2012 .

[134]  Mortaza Yari,et al.  Proposal and analysis of a new combined cogeneration system based on the GT-MHR cycle , 2012 .

[135]  Baltasar Peñate,et al.  Seawater reverse osmosis desalination driven by a solar Organic Rankine Cycle: Design and technology assessment for medium capacity range , 2012 .

[136]  Tae-woo Kim,et al.  Systematic approach for draw solute selection and optimal system design for forward osmosis desalination , 2012 .

[137]  Christopher J. Koroneos,et al.  Geothermal waters heat integration for the desalination of sea water , 2012, Desalination and Water Treatment.

[138]  Osamah M. Al-Hawaj,et al.  Theoretical analysis of sliding vane energy recovery device , 2011 .

[139]  Ahmed Ouammi,et al.  An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system , 2011 .

[140]  Hassan E.S. Fath,et al.  A comprehensive techno-economical review of indirect solar desalination , 2011 .

[141]  Jamel Belhadj,et al.  Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit , 2011 .

[142]  Julián Blanco,et al.  Experimental analysis of an air gap membrane distillation solar desalination pilot system , 2011 .

[143]  I. Khamis,et al.  Nuclear desalination: A viable option of the future based on existing experience , 2011 .

[144]  Amin Behzadmehr,et al.  Analysis of a solar desalination unit with humidification–dehumidification cycle using DoE method , 2011 .

[145]  Linda Zou,et al.  Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination , 2011 .

[146]  Robert Pohl,et al.  Seawater desalination (RO) as a wind powered industrial process — Technical and economical specifics , 2011 .

[147]  Baltasar Peñate,et al.  Assessment of a stand-alone gradual capacity reverse osmosis desalination plant to adapt to wind pow , 2011 .

[148]  N. Larché,et al.  Review of material selection and corrosion in seawater reverse osmosis desalination plants , 2011 .

[149]  B. Freeman,et al.  Surface modification of thin film composite membrane support layers with polydopamine: Enabling use , 2011 .

[150]  Sherub Phuntsho,et al.  A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating , 2011 .

[151]  Zhuo. Sun,et al.  Electrosorption of different cations and anions with membrane capacitive deionization based on carbon nanotube/nanofiber electrodes and ion-exchange membranes , 2011 .

[152]  S. Mitra,et al.  Carbon nanotube enhanced membrane distillation for online preconcentration of trace pharmaceuticals in polar solvents. , 2011, The Analyst.

[153]  Philip Davies,et al.  A solar-powered reverse osmosis system for high recovery of freshwater from saline groundwater , 2011 .

[154]  T. Mohammadi,et al.  Salty water desalination using carbon nanotubes membrane , 2011 .

[155]  Bryce S. Richards,et al.  Renewable energy powered membrane technology: The effect of wind speed fluctuations on the performan , 2011 .

[156]  Tinu Abraham,et al.  Socio-economic & technical assessment of photovoltaic powered membrane desalination processes for India , 2011 .

[157]  K. Srithar,et al.  Performance analysis of solar stills based on various factors affecting the productivity—A review , 2011 .

[158]  S. Mitra,et al.  Water desalination using carbon-nanotube-enhanced membrane distillation. , 2011, ACS applied materials & interfaces.

[159]  Sümer Şahin,et al.  An innovative nuclear reactor for electricity and desalination , 2011 .

[160]  Hacene Mahmoudi,et al.  On the use of wind energy to power reverse osmosis desalination plant: A case study from Ténès (Algeria) , 2011 .

[161]  Corinne Cabassud,et al.  Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination , 2011 .

[162]  T. Galal,et al.  Heat transfer performance of condenser tubes in an MSF desalination system , 2010 .

[163]  Menachem Elimelech,et al.  Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO) , 2010 .

[164]  Lourdes García-Rodríguez,et al.  Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC). , 2010 .

[165]  Lourdes García-Rodríguez,et al.  Design recommendations for a multi-effect distillation plant connected to a double-effect absorption heat pump: A solar desalination case study , 2010 .

[166]  Tzahi Y. Cath,et al.  Selection of inorganic-based draw solutions for forward osmosis applications , 2010 .

[167]  A. S. Nafey,et al.  Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations , 2010 .

[168]  A. S. Nafey,et al.  Thermo-economic analysis of a combined solar organic Rankine cycle-reverse osmosis desalination process with different energy recovery configurations , 2010 .

[169]  H. Bart,et al.  Novel polymer film heat exchangers for seawater desalination , 2010 .

[170]  T. V. Arjunan,et al.  Active solar distillation--A detailed review , 2010 .

[171]  Vassilis Belessiotis,et al.  Nuclear desalination: A review on past and present , 2010 .

[172]  B. Freeman,et al.  Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes , 2010 .

[173]  I. Khamis,et al.  The IAEA DEEP desalination economic model: A critical review , 2010 .

[174]  A. E. Kabeel,et al.  Cost analysis of different solar still configurations , 2010 .

[175]  Haimin Hu,et al.  Multi-effect Distillation System for Seawater Desalination Driven by Tidal Energy and Low Grade Energy , 2010 .

[176]  Menachem Elimelech,et al.  Reverse draw solute permeation in forward osmosis: modeling and experiments. , 2010, Environmental science & technology.

[177]  D. Zejli,et al.  Economic feasibility of a 11-MW wind powered reverse osmosis desalination system in Morocco , 2010 .

[178]  Sung Jae Kim,et al.  Direct seawater desalination by ion concentration polarization. , 2010, Nature nanotechnology.

[179]  Jae-Hwan Choi,et al.  Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane , 2010 .

[180]  P. M. Biesheuvel,et al.  Membrane capacitive deionization , 2010 .

[181]  Kuiwen Zhao,et al.  Theoretical study on multi-effect solar distillation system driven by tidal energy , 2009 .

[182]  Lawrence L. Kazmerski,et al.  Solar and wind opportunities for water desalination in the Arab regions , 2009 .

[183]  John H. Lienhard,et al.  The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production , 2009 .

[184]  Chihpin Huang,et al.  Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. , 2009, Water research.

[185]  Gerald Müller,et al.  A wave energy driven RO stand-alone desalination system: initial design and testing , 2009 .

[186]  Amy E. Childress,et al.  The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes , 2009 .

[187]  V. Montiel,et al.  Desalination of underground brackish waters using an electrodialysis system powered directly by photovoltaic energy , 2008 .

[188]  H. Matsuyama,et al.  Optimization of the intermittent chlorine injection (ICI) method for seawater desalination RO plants , 2008 .

[189]  H. Matsuyama,et al.  Elimination of biological fouling in seawater reverse osmosis desalination plants , 2008 .

[190]  H. Matsuyama,et al.  High recovery system in seawater reverse osmosis plants , 2008 .

[191]  Shichang Xu,et al.  Energy Recovery Device with a Fluid Switcher for Seawater Reverse Osmosis System , 2008 .

[192]  Veronique Bonnelye,et al.  UF/MF as RO pre-treatment: the real benefit , 2008 .

[193]  K. A. Matis,et al.  Application of flotation as a pretreatment process during desalination , 2008 .

[194]  Matthew Folley,et al.  An autonomous wave-powered desalination system , 2008 .

[195]  Mehmet Cakmakci,et al.  Cost analysis of seawater desalination with reverse osmosis in Turkey , 2008 .

[196]  Hou Shaobo,et al.  Performance optimization of solar multi-stage flash desalination process using Pinch technology , 2008 .

[197]  Ben Corry,et al.  Designing carbon nanotube membranes for efficient water desalination. , 2008, The journal of physical chemistry. B.

[198]  Juan Manuel Ortiz,et al.  Electrodialysis of brackish water powered by photovoltaic energy without batteries: direct connection behaviour , 2007 .

[199]  Menachem Elimelech,et al.  Energy requirements of ammonia-carbon dioxide forward osmosis desalination , 2007 .

[200]  S. Nisan,et al.  Economic evaluation of nuclear desalination systems , 2007 .

[201]  B. M. Misra,et al.  Seawater desalination using nuclear heat/electricity — Prospects and challenges , 2007 .

[202]  Andrea I. Schäfer,et al.  Social aspects of a solar-powered desalination unit for remote Australian communities , 2007 .

[203]  A. S. Nafey,et al.  Theoretical and experimental study of a small unit for solar desalination using flashing process , 2007 .

[204]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[205]  Robert L McGinnis,et al.  Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance , 2006 .

[206]  Juan Manuel Ortiz,et al.  Photovoltaic electrodialysis system for brackish water desalination: Modeling of global process , 2006 .

[207]  Philip Davies,et al.  Wave-powered desalination : resource assessment and review of technology , 2005 .

[208]  A. Ophir,et al.  Advanced MED process for most economical sea water desalination , 2005 .

[209]  C. F. Schutte,et al.  Capacitive Deionization Technology™: An alternative desalination solution , 2005 .

[210]  Purnima Jalihal,et al.  Wave powered desalination system , 2004 .

[211]  B. M. Misra,et al.  The role of nuclear desalination in meeting the potable water needs in water scarce areas in the next decades , 2004 .

[212]  Mohammed S. Aljohani,et al.  Nuclear desalination competitiveness in the western region of the Kingdom of Saudi Arabia , 2004 .

[213]  L. García-Rodríguez Renewable energy applications in desalination: state of the art , 2003 .

[214]  H. N. Singh,et al.  Present status of solar distillation , 2003 .

[215]  Toshio Konishi,et al.  Nuclear desalination: a viable option for producing freshwater** , 2003 .

[216]  Hisham Ettouney,et al.  MSF nuclear desalination , 2003 .

[217]  Aly Karameldin,et al.  The Red Sea area wind-driven mechanical vapor compression desalination system☆☆☆ , 2003 .

[218]  Clark C.K. Liu,et al.  Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control , 2002 .

[219]  H. Ettouney,et al.  Fundamentals of Salt Water Desalination , 2002 .

[220]  Baltasar Peñate,et al.  Electrodialysis desalination designed for wind energy (on-grid tests) , 2001 .

[221]  Janusz Wojtkowiak,et al.  Measurements of temperature distribution in ground , 2001 .

[222]  David Chiaramonti,et al.  Deployment of a submarine reverse osmosis desalination prototype plant (RODSS): field tests and preliminary technical evaluations , 2001 .

[223]  R. A. Sawyer,et al.  An investigation into the economic feasibility of unsteady incompressible duct flow (waterhammer) to create hydrostatic pressure for seawater desalination using reverse osmosis , 2001 .

[224]  Mohamed M. Megahed,et al.  Nuclear desalination : history and prospects , 2001 .

[225]  G. W. Vickers,et al.  Flux enhancement in reverse osmosis using centrifugal membrane separation , 2000 .

[226]  G. W. Vickers,et al.  Fluid mechanics and mass transport in centrifugal membrane separation , 2000 .

[227]  T. Fyles,et al.  Fouling reduction using centrifugal membrane separation , 2000 .

[228]  Toshio Konishi,et al.  Nuclear seawater desalination — IAEA activities and economic evaluation for southern Europe☆ , 1999 .

[229]  D. Colombo,et al.  An energy-efficient submarine desalination plant , 1999 .

[230]  Hassan E.S. Fath,et al.  Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment , 1998 .

[231]  K. S. Speigler,et al.  A Desalination Primer , 1994 .

[232]  G. W. Vickers,et al.  The technical and economic benefits of centrifugal reverse osmosis desalination , 1992 .

[233]  H. Girault Basic principles of membrane technology , 1992 .

[234]  C. Panchal,et al.  Production Of Desalinated Water Using Ocean Thermal Energy , 1991, OCEANS 91 Proceedings.

[235]  Colin Pritchard,et al.  Wavepowered desalination: Experimental and mathematical modelling , 1991 .

[236]  M. Rey,et al.  Ocean thermal energy and desalination , 1981 .

[237]  O. Levenspiel,et al.  The Osmotic Pump: In principle, but probably not in practice, fresh water can be extracted from our oceans for no expenditure of energy. , 1974, Science.

[238]  M. Maksimovic,et al.  Solution , 1902, The Mathematical Gazette.

[239]  M. Radetzki History and Prospects , 2016 .

[240]  H. Sharon,et al.  A review of solar energy driven desalination technologies , 2015 .

[241]  Zhao Ming-zhon,et al.  Preliminary Study on Tidal Current Energy Direct Drive Type Seawater Desalination System , 2013 .

[242]  Liu Wen-long Application of forward osmosis membrane separation technology in desalinization of seawater , 2013 .

[243]  Qammer Zaib,et al.  Application of carbon nanomaterials in desalination processes , 2013 .

[244]  Jin Zhi-jiang,et al.  New Flashing and Condensing Integration Device Used for Ocean Thermal Energy Desalination , 2012 .

[245]  Edward K. Summers,et al.  Technical evaluation of stand-alone solar powered membrane distillation systems , 2012 .

[246]  Z. Hua Experimental Research on HCFC-141b Hydrate Seawater Desalination , 2012 .

[247]  Ren Hongbo APPLICATION OF HYDRATE TO SEAWATER DESALINATION , 2011 .

[248]  Ganesh Kothapalli,et al.  Modelling Small-Scale Stand-Alone (PV) Energy Systems with Reverse Osmosis Integration , 2011 .

[249]  Yang Qingfeng Research advances in forward osmosis membrane separation , 2011 .

[250]  Baltasar Peñate,et al.  Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery tur , 2011 .

[251]  Remy Pascal,et al.  Wave Powered Desalination , 2010 .

[252]  Liu Lin,et al.  Study on the Application of Floater's Relative Heaving Motion in Seawater Desalination , 2010 .

[253]  Hala Al-Fulaij,et al.  Steady state and dynamic models of multistage flash desalination: A review , 2010 .

[254]  Murray Thomson,et al.  Modified operation of a small scale energy recovery device for seawater reverse osmosis , 2010 .

[255]  Liang Wen-ying Technology of Magnetic fluid Power Generation , 2010 .

[256]  Varun,et al.  Solar stills: A review , 2010 .

[257]  Matthias Rommel,et al.  Membrane Distillation for Solar Desalination , 2009 .

[258]  Guo-gen Huang Establishment and test research of experiment system for seawater desalination based on ocean thermal energy , 2008 .

[259]  A. Henry,et al.  The development of Oyster - a shallow water surging wave energy converter , 2007 .

[260]  K. Sirkar,et al.  Polymeric Hollow Fiber Heat Exchangers (PHFHEs): A New Type of Compact Heat Exchanger for Lower Temperature Applications , 2005 .

[261]  National Nuclear Security Administration under Contract DE-AC04-94AL85000. , 2003 .

[262]  M. Tomaszewska,et al.  Membrane distillation - examples of applications in technology and environmental protection , 2000 .

[263]  Douglas C. Hicks,et al.  Delbouy: Ocean wave-powered seawater reverse osmosis desalination systems☆ , 1989 .

[264]  S. Loeb,et al.  Performance of permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures , 1978 .

[265]  S. Loeb,et al.  Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis , 1978 .

[266]  S. Salter Wave power , 1974, Nature.

[267]  T. Tamura Nuclear desalination. , 1968, Nature.