Development and application of a reactive plume-in-grid model: evaluation over Greater Paris

Abstract. Emissions from major point sources are badly represented by classical Eulerian models. An overestimation of the horizontal plume dilution, a bad representation of the vertical diffusion as well as an incorrect estimate of the chemical reaction rates are the main limitations of such models in the vicinity of major point sources. The plume-in-grid method is a multiscale modeling technique that couples a local-scale Gaussian puff model with an Eulerian model in order to better represent these emissions. We present the plume-in-grid model developed in the air quality modeling system Polyphemus, with full gaseous chemistry. The model is evaluated on the metropolitan Ile-de-France region, during six months (summer 2001). The subgrid-scale treatment is used for 89 major point sources, a selection based on the emission rates of NOx and SO2. Results with and without the subgrid treatment of point emissions are compared, and their performance by comparison to the observations on measurement stations is assessed. A sensitivity study is also carried out, on several local-scale parameters as well as on the vertical diffusion within the urban area. Primary pollutants are shown to be the most impacted by the plume-in-grid treatment. SO2 is the most impacted pollutant, since the point sources account for an important part of the total SO2 emissions, whereas NOx emissions are mostly due to traffic. The spatial impact of the subgrid treatment is localized in the vicinity of the sources, especially for reactive species (NOx and O3). Ozone is mostly sensitive to the time step between two puff emissions which influences the in-plume chemical reactions, whereas the almost-passive species SO2 is more sensitive to the injection time, which determines the duration of the subgrid-scale treatment. Future developments include an extension to handle aerosol chemistry, and an application to the modeling of line sources in order to use the subgrid treatment with road emissions. The latter is expected to lead to more striking results, due to the importance of traffic emissions for the pollutants of interest.

[1]  J. R. Philip Diffusion by Continuous Movements , 1968 .

[2]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[3]  Christian Seigneur,et al.  On the treatment of point source emissions in urban air quality modeling , 1983 .

[4]  I. Troen,et al.  A simple model of the atmospheric boundary layer; sensitivity to surface evaporation , 1986 .

[5]  Steven R. Hanna,et al.  Hybrid Plume Dispersion Model (HPDM) Development and Evaluation , 1989 .

[6]  R. H. Maryon,et al.  Tropospheric dispersion: The first ten days after a puff release , 1995 .

[7]  A. Russell,et al.  Development of a computationally efficient, reactive subgrid‐scale plume model and the impact in the northeastern United States using increasing levels of chemical detail , 1996 .

[8]  F. Kirchner,et al.  A new mechanism for regional atmospheric chemistry modeling , 1997 .

[9]  Prakash Karamchandani,et al.  Reduced Gas-Phase Kinetic Mechanism for Atmospheric Plume Chemistry , 1998 .

[10]  Prakash Karamchandani,et al.  Development and Evaluation of a State-of-the-Science Reactive Plume Model , 2000 .

[11]  Prakash Karamchandani,et al.  Development and application of a state-of-the-science plume-in-grid model , 2002 .

[12]  Vivien Mallet,et al.  Development and validation of a fully modular platform for numerical modelling of air pollution: POLAIR , 2004 .

[13]  S. Hanna,et al.  Air quality model performance evaluation , 2004 .

[14]  Prakash Karamchandani,et al.  Plume-in-grid modeling of summer air pollution in Central California , 2006 .

[15]  Lin Wu,et al.  Technical Note: The air quality modeling system Polyphemus , 2007 .

[16]  Bruno Sportisse,et al.  Aerosol modeling at a regional scale: Model-to-data comparison and sensitivity analysis over Greater Paris , 2007 .

[17]  L. Deguillaume,et al.  Uncertainty evaluation of ozone production and its sensitivity to emission changes over the Ile‐de‐France region during summer periods , 2008 .

[18]  Vivien Mallet,et al.  Comparative Study of Gaussian Dispersion Formulas within the Polyphemus Platform: Evaluation with Prairie Grass and Kincaid Experiments , 2009 .

[19]  Vivien Mallet,et al.  Subgrid‐scale treatment for major point sources in an Eulerian model: A sensitivity study on the European Tracer Experiment (ETEX) and Chernobyl cases , 2010 .

[20]  Subgrid-scale treatment for major point sources in an Eulerian model : a sensitivity study on the ETEX and Chernobyl cases , 2010 .