Aluminum-induced structure evolution and mechanical strengthening of calcium silicate hydrates: an atomistic insight

[1]  B. P. Gautam,et al.  Performance Enhancement of Sustainable Cementitious Material with Ultrahigh Content Limestone and Calcined Clay , 2022, ACS Sustainable Chemistry & Engineering.

[2]  Fazhou Wang,et al.  Comparison between Fly Ash and Slag Slurry in Various Alkaline Environments: Dissolution, Migration, and Coordination State of Aluminum , 2021, ACS Sustainable Chemistry & Engineering.

[3]  K. M. Liew,et al.  New insights into creep characteristics of calcium silicate hydrates at molecular level , 2021 .

[4]  G. Sant,et al.  Machine Learning Enables Rapid Screening of Reactive Fly Ashes Based on Their Network Topology , 2021 .

[5]  L. W. Zhang,et al.  Atomistic insights into structure evolution and mechanical property of calcium silicate hydrates influenced by nuclear waste caesium. , 2021, Journal of hazardous materials.

[6]  C. Poon,et al.  Effects of sodium/calcium cation exchange on the mechanical properties of calcium silicate hydrate (C-S-H) , 2020 .

[7]  X. Chen,et al.  Si-doped graphene in geopolymer: Its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability , 2020 .

[8]  K. Liew,et al.  Carbon nanotube-geopolymer nanocomposites: A molecular dynamics study of the influence of interfacial chemical bonding upon the structural and mechanical properties , 2020 .

[9]  V. Schmidt,et al.  Mineralogical and microstructural response of hydrated cement blends to leaching , 2019 .

[10]  D. Hou,et al.  Insights on ions migration in the nanometer channel of calcium silicate hydrate under external electric field , 2019, Electrochimica Acta.

[11]  K. Liew,et al.  Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding , 2019, Carbon.

[12]  D. Hou,et al.  Molecular dynamics modeling of the structure, dynamics, energetics and mechanical properties of cement-polymer nanocomposite , 2019, Composites Part B: Engineering.

[13]  T. Zhao,et al.  Na and Cl immobilization by size controlled calcium silicate hydrate nanometer pores , 2019, Construction and Building Materials.

[14]  Jiaping Liu,et al.  Precipitated calcium hydroxide morphology in nanoparticle suspensions: An experimental and molecular dynamics study , 2018, Cement and Concrete Composites.

[15]  Tao Li,et al.  Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: Structure, dynamics and interfacial interaction , 2018, Computational Materials Science.

[16]  Jack Arayro,et al.  Atomistic and mesoscale simulation of sodium and potassium adsorption in cement paste. , 2018, The Journal of chemical physics.

[17]  Dongshuai Hou,et al.  Structure, Dynamics, and Mechanical Properties of Cross-Linked Calcium Aluminosilicate Hydrate: A Molecular Dynamics Study , 2018, ACS Sustainable Chemistry & Engineering.

[18]  Wei Sun,et al.  Calcite crystallization in the cement system: morphological diversity, growth mechanism and shape evolution. , 2018, Physical chemistry chemical physics : PCCP.

[19]  T. Zhao,et al.  Molecular dynamics study on the Tri-calcium silicate hydration in sodium sulfate solution: Interface structure, dynamics and dissolution mechanism , 2018 .

[20]  Jack Arayro,et al.  Thermodynamics, kinetics, and mechanics of cesium sorption in cement paste: A multiscale assessment , 2018, Physical Review Materials.

[21]  John L. Provis,et al.  Slag-Based Cements That Resist Damage Induced by Carbon Dioxide , 2018 .

[22]  A. Attanasio,et al.  Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance , 2018 .

[23]  D. Heyes,et al.  Advances in nonequilibrium molecular dynamics simulations of lubricants and additives , 2018 .

[24]  Zongjin Li,et al.  Investigation on microstructure and microstructural elastic properties of mortar incorporating fly ash , 2018 .

[25]  Jiaping Liu,et al.  Interfacial Connection Mechanisms in Calcium-Silicate-Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study. , 2017, ACS applied materials & interfaces.

[26]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[27]  D. Shapiro,et al.  Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate , 2017, Scientific Reports.

[28]  Zongjin Li,et al.  Molecular Simulation of the Ions Ultraconfined in the Nanometer-Channel of Calcium Silicate Hydrate: Hydration Mechanism, Dynamic Properties, and Influence on the Cohesive Strength. , 2017, Inorganic chemistry.

[29]  Guangji Xu,et al.  Molecular dynamics study of oxidative aging effect on asphalt binder properties , 2017 .

[30]  G. Hirasaki,et al.  Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water. , 2016, Journal of magnetic resonance.

[31]  C. White,et al.  Nanoscale Charge-Balancing Mechanism in Alkali-Substituted Calcium-Silicate-Hydrate Gels. , 2016, The journal of physical chemistry letters.

[32]  B. Lothenbach,et al.  Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate , 2016 .

[33]  S. Mohammadi,et al.  Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C–S–H) composite , 2016 .

[34]  Ding Qingjun,et al.  Molecular structure and dynamics of an aqueous sodium chloride solution in nano-pores between portlandite surfaces: a molecular dynamics study. , 2016, Physical chemistry chemical physics : PCCP.

[35]  Rafat Siddique,et al.  Recent advances in understanding the role of supplementary cementitious materials in concrete , 2015 .

[36]  G. Saoût,et al.  Incorporation of aluminium in calcium-silicate-hydrates , 2015 .

[37]  G. Psofogiannakis,et al.  ReaxFF Reactive Molecular Dynamics Simulation of the Hydration of Cu-SSZ-13 Zeolite and the Formation of Cu Dimers , 2015 .

[38]  Chuanlin Hu Microstructure and mechanical properties of fly ash blended cement pastes , 2014 .

[39]  K. V. Van Vliet,et al.  Combinatorial molecular optimization of cement hydrates , 2014, Nature Communications.

[40]  M. Cyr,et al.  Evaluation and improvement of pozzolanic activity of andesite for its use in eco-efficient cement , 2013 .

[41]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[42]  A. Nonat,et al.  27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. , 2012, Inorganic chemistry.

[43]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[44]  H. Manzano,et al.  A model for the C-A-S-H gel formed in alkali-activated slag cements , 2011 .

[45]  I. Richardson,et al.  Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 °C. , 2010 .

[46]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[47]  A. Nonat,et al.  Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions , 2009 .

[48]  H. Manzano,et al.  Aluminum incorporation to dreierketten silicate chains. , 2009, The journal of physical chemistry. B.

[49]  T. Kowald,et al.  Hydration Behaviour, Structure and Morphology of Hydration Phases in Advanced Cement-based Systems Containing Micro and Nanoscale Pozzolanic Additives , 2008 .

[50]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[51]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[52]  X. Cong,et al.  29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates , 1996 .

[53]  K. Scrivener,et al.  Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3) , 2019, Cement and Concrete Research.

[54]  I. Richardson,et al.  The incorporation of minor and trace elements into calcium silicate hydrate (CSH) gel in hardened cement pastes , 1993 .