COMPARING SHOCKS IN PLANETARY NEBULAE WITH THE SOLAR WIND TERMINATION SHOCK

We show that suprathermal particles, termed pick-up ions (PUIs), might reduce the postshock temperature of the fast wind and jets in some planetary nebulae (PNs) and in symbiotic systems. The goal is to explain the finding that the temperature of the “hot bubble” formed by the postshock gas in some PNs and symbiotic nebulae is lower, sometimes by more than an order of magnitude, than the value expected from simple hydrodynamical calculations. Although various explanations have been proposed, there is as yet no preferred solution for this “low temperature problem.” PUIs have been invoked to explain the low temperature behind the termination shock of the solar wind. While in the case of the solar wind the neutral atoms that turn into PUIs penetrate the preshock solar wind region from the interstellar medium, in PNs the PUI source is more likely slowly moving clumps embedded in the fast wind or jets. These clumps are formed by instabilities or from backflowing cold gas. Our estimates indicate that in young PNs these PUIs will thermalize before leaving the system. Only in older PNs whose sizes exceed ∼5000 AU and for which the fast wind mass loss rate is do we expect the PUIs to be an efficient carrier of energy out of the postshock region (the hot bubble).

[1]  D. Massa,et al.  A FUSE View of Winds from the Central Stars of Planetary Nebulae , 2010, Publications of the Astronomical Society of Australia.

[2]  R. Teyssier,et al.  3D simulations of supernova remnants evolution including non-linear particle acceleration , 2009, 0912.4886.

[3]  Y. Ohira,et al.  EFFECTS OF NEUTRAL PARTICLES ON MODIFIED SHOCKS AT SUPERNOVA REMNANTS , 2009, 0912.2859.

[4]  N. Pogorelov,et al.  MICROSTRUCTURE OF THE HELIOSPHERIC TERMINATION SHOCK: IMPLICATIONS FOR ENERGETIC NEUTRAL ATOM OBSERVATIONS , 2010 .

[5]  D. Massa,et al.  A FUSE View of the Stellar Winds of Planetary Nebula Central Stars , 2009, 0912.0144.

[6]  K. Mukai,et al.  CHANDRA DETECTION OF EXTENDED X-RAY EMISSION FROM THE RECURRENT NOVA RS OPHIUCHI , 2009, 0910.5484.

[7]  J. Walsh,et al.  DETECTION OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6302 , 2009, 0909.5143.

[8]  N. Schwadron,et al.  Energy dissipation and ion heating at the heliospheric termination shock , 2009 .

[9]  S. Viti,et al.  A “FIREWORK” OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA) , 2009 .

[10]  S. Viti,et al.  Knots in the Helix Nebula found in H2 , 2009, 0906.2870.

[11]  N. Soker,et al.  Very late thermal pulses influenced by accretion in planetary nebulae , 2009, 0903.3364.

[12]  N. Soker,et al.  NARROW RADIATIVE RECOMBINATION CONTINUA: A SIGNATURE OF IONS CROSSING THE CONTACT DISCONTINUITY OF ASTROPHYSICAL SHOCKS , 2009, 0901.1039.

[13]  J. Richardson,et al.  Plasma temperature distributions in the heliosheath , 2008 .

[14]  H. Fahr,et al.  Supersonic solar wind ion flows downstream of the termination shock explained by a two-fluid shock model , 2008 .

[15]  A. Warmuth,et al.  The evolution of planetary nebulae V. The diffuse X-ray emission , 2008 .

[16]  John W. Belcher,et al.  Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock , 2008, Nature.

[17]  S. Krimigis,et al.  Mediation of the solar wind termination shock by non-thermal ions , 2008, Nature.

[18]  N. Soker,et al.  THE X-RAY SPECTRUM OF A PLANETARY NEBULA AT HIGH RESOLUTION: CHANDRA GRATINGS SPECTROSCOPY OF BD +30°3639 , 2008, 0806.2281.

[19]  N. Soker,et al.  X-ray emission from jet–wind interaction in planetary nebulae , 2007, 0711.3265.

[20]  K. Heng,et al.  Broad Ly α emission from supernova remnants in young galaxies , 2007, 0710.4282.

[21]  B. Balick,et al.  Serendipitous Chandra X-Ray Detection of a Hot Bubble within the Planetary Nebula NGC 5315 , 2007, 0709.4139.

[22]  J. Kastner X-ray Emission from Planetary Nebulae and their Central Stars: a Status Report , 2007, 0709.4136.

[23]  MIT,et al.  Outer Jet X-Ray and Radio Emission in R Aquarii: 1999.8 to 2004.0 , 2007, 0705.2570.

[24]  G. Ferland,et al.  Determination of the Physical Conditions of the Knots in the Helix Nebula from Optical and Infrared Observations , 2007, astro-ph/0701636.

[25]  J. Blondin,et al.  X‐ray emission from planetary nebulae calculated by 1D spherical numerical simulations , 2006, astro-ph/0610508.

[26]  W. Marcolino,et al.  Detailed Far-Ultraviolet to Optical Analysis of Four [WR] Stars , 2006, astro-ph/0609512.

[27]  R. Gruendl,et al.  XMM-Newton Observations of the Bipolar Planetary Nebulae NGC 2346 and NGC 7026 , 2006 .

[28]  M. Stute,et al.  X-Ray Emission from Planetary Nebulae. I. Spherically Symmetric Numerical Simulations , 2006, astro-ph/0609442.

[29]  W. Latter,et al.  Infrared Observations of the Helix Planetary Nebula , 2006, astro-ph/0607541.

[30]  N. Soker,et al.  X‐ray emission by a shocked fast wind from the central stars of planetary nebulae , 2005, astro-ph/0508371.

[31]  P. McCullough,et al.  The Multitude of Molecular Hydrogen Knots in the Helix Nebula , 2005, astro-ph/0509887.

[32]  N. Soker,et al.  X-Ray Imaging of Planetary Nebulae with Wolf-Rayet-type Central Stars: Detection of the Hot Bubble in NGC 40 , 2005, astro-ph/0508346.

[33]  Usa,et al.  XMM-Newton detection of hot gas in the Eskimo Nebula: Shocked stellar wind or collimated outflows? , 2004, astro-ph/0412540.

[34]  M. Bzowski,et al.  Are the sungrazing comets the inner source of pickup ions and energetic neutral atoms , 2004, astro-ph/0405148.

[35]  A. Frank,et al.  X-Ray Emission from the Pre-planetary Nebula Henize 3-1475 , 2003, astro-ph/0312130.

[36]  Joel H. Kastner,et al.  A Compact X-Ray Source and Possible X-Ray Jets within the Planetary Nebula Menzel 3 , 2003, astro-ph/0305331.

[37]  N. Soker,et al.  On the Luminosities and Temperatures of Extended X-Ray Emission from Planetary Nebulae , 2002, astro-ph/0209139.

[38]  P. J. Huggins,et al.  High-Resolution CO and H2 Molecular Line Imaging of a Cometary Globule in the Helix Nebula , 2002, astro-ph/0205516.

[39]  R. Gruendl,et al.  Diffuse X-ray emission from the planetary nebula NGC 7009 , 2002, astro-ph/0203049.

[40]  H. Lamers,et al.  Mass-loss rates of H-rich central stars of planetary nebulae as distance indicators? , 2002 .

[41]  P. J. Huggins,et al.  High resolution near-infrared spectro-imaging of NGC 7027 , 2002 .

[42]  R. Gruendl,et al.  The Enigmatic X-Ray Point Sources at the Central Stars of NGC 6543 and NGC 7293 , 2001, astro-ph/0104270.

[43]  N. Soker Backflow in post‐asymptotic giant branch stars , 2001, astro-ph/0103105.

[44]  N. Soker,et al.  Discovery of Extended X-Ray Emission from the Planetary Nebula NGC 7027 by the Chandra X-Ray Observatory , 2001, astro-ph/0102468.

[45]  A. Zijlstra,et al.  Bipolar Outflows from OH/IR Stars , 2000, astro-ph/0010602.

[46]  N. Soker,et al.  Chandra X-Ray Observatory Detection of Extended X-Ray Emission from the Planetary Nebula BD +30°3639 , 2000, astro-ph/0010167.

[47]  R. Neri,et al.  The Structure and Dynamics of the Proto-Planetary Nebula M1-92 , 1998 .

[48]  N. Soker Detecting planets in planetary nebulae , 1998, astro-ph/9808290.

[49]  Thomas H. Chang,et al.  High-Resolution X-Ray Image of the Hydrogen-deficient Planetary Nebula Abell 30 , 1997 .

[50]  Y. Chu,et al.  X-ray Emission from Planetary Nebulae , 1997 .

[51]  A. Cummings,et al.  Composition of anomalous cosmic rays and implications for the heliosphere , 1996 .

[52]  W. Webber,et al.  and 1994 from observations of anomalous cosmic rays , 1996 .

[53]  C. O’Dell,et al.  Cometary knots in the Helix Nebula , 1996 .

[54]  Iver H. Cairns,et al.  Interstellar pickup ions and quasi‐perpendicular shocks: Implications for the termination shock and interplanetary shocks , 1996 .

[55]  G. Zank Interaction of the solar wind with the local interstellar medium: a theoretical perspective , 1995 .

[56]  S. Pottasch ASYMMETRICAL PLANETARY NEBULAE , 1995 .

[57]  N. Soker Heat conduction fronts in planetary nebulae , 1994 .

[58]  J. Walsh,et al.  Dust in the neutral globules of the Helix nebula, NGC 7293 , 1992 .

[59]  G. Siscoe,et al.  On the flux and the energy spectrum of interstellar ions in the solar system , 1976 .

[60]  Reuven Ramaty,et al.  An interpretation of the observed oxygen and nitrogen enhancements in low energy cosmic rays. , 1973 .

[61]  G. Gloeckler,et al.  Differential Energy Spectra of Low-Energy (<8.5 MeV per Nucleon) Heavy Cosmic Rays during Solar Quiet Times , 1973 .

[62]  L. Spitzer Physics of fully ionized gases , 1956 .