Optoeletronic investigation of Cu2ZnSn(S,Se)4 thin-films & Cu2ZnSn(S,Se)4/CdS interface with scanning probe microscopy

[1]  Mohammad Khaja Nazeeruddin,et al.  Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell , 2014, Nature Communications.

[2]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[3]  S. Dou,et al.  One-pot aqueous synthesis of cysteine-capped CdTe/CdS core–shell nanowires , 2014, Journal of Nanoparticle Research.

[4]  D. Hariskos,et al.  Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% , 2014 .

[5]  D. Hariskos,et al.  Cover Picture: Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% (Phys. Status Solidi RRL 3/2014) , 2014 .

[6]  B. Yao,et al.  An experimental and first-principles study on band alignments at interfaces of Cu2ZnSnS4/CdS/ZnO heterojunctions , 2014 .

[7]  W. Jo,et al.  Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S,Se)4 thin films grown by sputtering-based two-step process , 2014, Nanoscale Research Letters.

[8]  Suhuai Wei,et al.  Engineering Grain Boundaries in Cu2ZnSnSe4 for Better Cell Performance: A First‐Principle Study , 2014 .

[9]  L. Qiao,et al.  Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy , 2013 .

[10]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[11]  Yu-Qing Zhang,et al.  Coimmobilization of Naringinases on Silk Fibroin Nanoparticles and Its Application in Food Packaging , 2013 .

[12]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[13]  W. Su,et al.  Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study , 2013, Journal of Nanoparticle Research.

[14]  Kwanghee Lee,et al.  Biased internal potential distributions in a bulk-heterojunction organic solar cell incorporated with a TiOx interlayer , 2012 .

[15]  B. Clemens,et al.  Investigating the Role of Grain Boundaries in CZTS and CZTSSe Thin Film Solar Cells with Scanning Probe Microscopy , 2012, Advanced materials.

[16]  Thuc‐Quyen Nguyen,et al.  Single nanowire OPV properties of a fullerene-capped P3HT dyad investigated using conductive and photoconductive AFM. , 2012, ACS nano.

[17]  Kwanghee Lee,et al.  Direct observation of internal potential distributions in a bulk heterojunction solar cell , 2011 .

[18]  L. Lauhon,et al.  Direct measurement of nanowire Schottky junction depletion region , 2011 .

[19]  B. Marsen,et al.  Cliff-like conduction band offset and KCN-induced recombination barrier enhancement at the CdS/Cu2ZnSnS4 thin-film solar cell heterojunction , 2011 .

[20]  W. Su,et al.  Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[21]  D. Mitzi,et al.  Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4. , 2011, ACS nano.

[22]  G. Kresse,et al.  First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  C. Frisbie,et al.  Determination of quasi-Fermi levels across illuminated organic donor/acceptor heterojunctions by Kelvin probe force microscopy. , 2011, Journal of the American Chemical Society.

[24]  D. Mitzi,et al.  Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface , 2011 .

[25]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[26]  W. Jo,et al.  Local current–voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se2 thin films investigated by conductive atomic force microscopy , 2011 .

[27]  A. Stemmer,et al.  Force gradient sensitive detection in lift-mode Kelvin probe force microscopy , 2011, Nanotechnology.

[28]  Thuc‐Quyen Nguyen,et al.  Nanostructure and Optoelectronic Characterization of Small Molecule Bulk Heterojunction Solar Cells by Photoconductive Atomic Force Microscopy , 2010 .

[29]  D. Mitzi,et al.  Thermally evaporated Cu2ZnSnS4 solar cells , 2010 .

[30]  B. Grévin,et al.  Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy. , 2010, Nano letters.

[31]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[32]  B. Hamadani,et al.  Origin of nanoscale variations in photoresponse of an organic solar cell. , 2010, Nano letters.

[33]  D. Ginger,et al.  Polymer nanowire/fullerene bulk heterojunction solar cells: how nanostructure determines photovoltaic properties. , 2010, ACS nano.

[34]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.

[35]  R. Miles,et al.  Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors , 2009 .

[36]  P. Escribano,et al.  Cu2ZnSnS4 films deposited by a soft-chemistry method , 2009 .

[37]  I. Forbes,et al.  New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material , 2008 .

[38]  Yang Yang,et al.  Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. , 2008, Nature nanotechnology.

[39]  L. Goris,et al.  Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy , 2006 .

[40]  Vincenzo Palermo,et al.  Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy , 2006 .

[41]  J. Sites,et al.  Efficiency limitations for wide-band-gap chalcopyrite solar cells , 2005 .

[42]  K. Ramanathan,et al.  Electrical modification in Cu(In,Ga)Se2 thin films by chemical bath deposition process of CdS films , 2005 .

[43]  Kunihiko Tanaka,et al.  Characterization of Cu2ZnSnS4 Thin Films Prepared by Photo-Chemical Deposition , 2005 .

[44]  K. Ramanathan,et al.  Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device? , 2004 .

[45]  M. Niwano,et al.  Kelvin Probe Study of Band Bending at Organic Semiconductor/Metal Interfaces: Examination of Fermi Level Alignment , 2004 .

[46]  Sidney R. Cohen,et al.  Electronically active layers and interfaces in polycrystalline devices: Cross-section mapping of CdS/CdTe solar cells , 2003 .

[47]  H. Katagiri,et al.  Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of EB evaporated precursors , 1997 .

[48]  Kentaro Ito,et al.  Sprayed films of stannite Cu2ZnSnS4 , 1996 .

[49]  E. H. Stevens,et al.  Electron mobility in heavily doped gallium arsenide , 1973 .