Active Thermoelectric Cooling Solutions for Airspace Applications: the THERMICOOL Project

To increase the reliability of aerospace electronics and reduce their overall power consumption, we investigated the possibility of incorporating active thermoelectric cooling (TEC) solutions. The harsh avionic environment demands sophisticated active control schemes that enable the achievement of high coefficient of performance. The positive effect of active PWM control has been validated both in simulation and on a working laboratory prototype that allowed us to clarify the pros and cons of the incorporation of TEC techniques in avionics applications. This paper has been performed under the framework of CLEAN SKY—THERMICOOL project.

[1]  Feng Guo,et al.  Thermoelectric Cooling for Power Electronics Circuits: Modeling and Active Temperature Control , 2014, IEEE Transactions on Industry Applications.

[2]  S. Said,et al.  A review on thermoelectric renewable energy: Principle parameters that affect their performance , 2014 .

[3]  E. C. Tatakis,et al.  Innovative waste heat recovery systems in rotorcrafts , 2012, 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion.

[4]  H. Anno,et al.  Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba8GaxSi46−x (nominal x=14–18) clathrates prepared by combining arc melting and spark plasma sintering methods , 2012 .

[5]  Chia‐Jyi Liu,et al.  High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated viahydrothermal synthesis and evacuated-and-encapsulated sintering , 2012 .

[6]  Ryoji Funahashi,et al.  Oxide thermoelectrics: The challenges, progress, and outlook , 2011 .

[7]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[8]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[9]  Jihui Yang,et al.  Solubility study of Yb in n-type skutterudites YbxCo4Sb12 and their enhanced thermoelectric properties , 2009 .

[10]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[11]  Ji-Hui Yang,et al.  Automotive Applications of Thermoelectric Materials , 2009 .

[12]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[13]  T. Seebeck,et al.  Recent advances on thermoelectric materials , 2008, 1106.0888.

[14]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[15]  Gang Chen,et al.  Nanostructured thermoelectric skutterudite Co(1-x)Ni(x)Sb3 alloys. , 2008, Journal of nanoscience and nanotechnology.

[16]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[17]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[18]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[19]  Naoki Shutoh,et al.  Thermoelectric properties of the Tix(Zr0.5Hf0.5)1-xNiSn half-Heusler compounds , 2005 .

[20]  S. Ben-Yaakov,et al.  Modeling and Analysis of Thermoelectric Modules , 2005, IEEE Transactions on Industry Applications.

[21]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[22]  N. Shutoh,et al.  Thermoelectric properties of the Ti/sub x/(Zr/sub 0.5/Hf/sub 0.5/)/sub 1-x/NiSn half-Heusler compounds , 2003, Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No.03TH8726).

[23]  M. Shikano,et al.  Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure , 2003 .

[24]  M. Shikano,et al.  Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit , 2002 .

[25]  G. Czycholl,et al.  Thermoelectric power of cerium and ytterbium intermetallics , 2001, cond-mat/0110179.

[26]  Kazuo T. Nakamura,et al.  High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals , 2001 .

[27]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[28]  Timothy P. Hogan,et al.  CsBi4Te6: A High‐Performance Thermoelectric Material for Low‐Temperature Applications. , 2000 .

[29]  D. M. Rowe,et al.  Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys , 1981, Nature.

[30]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .

[31]  Gang Chen,et al.  Nanostructured Thermoelectric Materials , 2013 .

[32]  A. P. Gonçalves,et al.  Role of Structures on Thermal Conductivity in Thermoelectric Materials , 2009 .

[33]  A. Rosa Chapter 5 – Thermoelectricity , 2009 .

[34]  Gang Chen,et al.  Nanostructured Thermoelectric Skutterudite Co1−xNixSb3 Alloys , 2008 .

[35]  Osamu Yamashita,et al.  Bismuth telluride compounds with high thermoelectric figures of merit , 2003 .