Epsilon-near-zero meta-lens for high resolution wide-field imaging.

Herein, we will propose a new application possibility of epsilon-near-zero (ENZ) materials: high resolution wide-field imaging. We show that the resolution can be dramatically enhanced by simply inserting a thin epsilon-near-zero (ENZ) material between the sample and substrate. By performing metal half-plane imaging, we experimentally demonstrate that the resolution could be enhanced by about 47% with a 300-nm-thick SiO2 interlayer, an ENZ material at 8-μm-wavelength (1250 cm-1). The physical origin of the resolution enhancement is the strong conversion of diffracted near fields to quasi-zeroth order far fields enabled by the directive emission of ENZ materials.

[1]  Sailing He,et al.  Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space , 2010, 1006.1036.

[2]  Ji-Hun Kang,et al.  Local capacitor model for plasmonic electric field enhancement , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[3]  Qiang Cheng,et al.  Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. , 2008, Physical review letters.

[4]  Nader Engheta,et al.  Experimental verification of n = 0 structures for visible light. , 2013, Physical review letters.

[5]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[6]  J. de Rosny,et al.  Planar metamaterial based on hybridization for directive emission. , 2012, Optics express.

[7]  Andrea Alù,et al.  Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. , 2008, Physical review letters.

[8]  P. Lasch,et al.  Spatial resolution in infrared microspectroscopic imaging of tissues. , 2006, Biochimica et biophysica acta.

[9]  G. Kino,et al.  Solid immersion microscope , 1990 .

[10]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[11]  Michael Scalora,et al.  Electric field enhancement in Énear-zero slabs under TM-polarized oblique incidence , 2012, 1212.1497.

[12]  Gilbert D. Feke,et al.  Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens , 1999 .

[13]  F. Bilotti,et al.  Metamaterial covers over a small aperture , 2004, IEEE Transactions on Antennas and Propagation.

[14]  N. Karpowicz,et al.  Apertureless terahertz near-field microscopy , 2005 .

[15]  D. Kim,et al.  Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism , 2010 .

[16]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[17]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[18]  I. W. Levin,et al.  Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy , 1997, Nature Medicine.

[19]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[20]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[21]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[22]  Virgilia Macias,et al.  High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams , 2011, Nature Methods.

[23]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[24]  J. Parsons,et al.  Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths , 2013, Nature Photonics.

[25]  Lei Zhou,et al.  Directive emissions from subwavelength metamaterial-based cavities , 2005 .