The swap of integral and limit in constructive mathematics

Integration within constructive, especially intuitionistic mathematics in the sense of L. E. J. Brouwer, slightly differs from formal integration theories: Some classical results, especially Lebesgue's dominated convergence theorem, have tobe substituted by appropriate alternatives. Although there exist sophisticated, but rather laborious proposals, e.g. by E. Bishop and D. S. Bridges (cf. [2]), the reference to partitions and the Riemann-integral, also with regard to the results obtained by R. Henstock and J. Kurzweil (cf. [9], [12]), seems to give a better direction. Especially, convergence theorems can be proved by introducing the concept of “equi-integrability”. The paper is strongly motivated by Brouwer's result that each function fully defined on a compact interval has necessarily to be uniformly continuous. Nevertheless, there are, with only one exception (a corollary of Theorem 4.2), no references to the fan-theorem or to bar-induction. Therefore, the whole paper can be read within the setting of Bishop's access to constructive mathematics. Nothing of genuine full-fledged Brouwerian intuitionism is used for the main results in this note (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  L. E. J. Brouwer,et al.  Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten , 2022 .

[2]  Claudio Sacerdoti Coen,et al.  A constructive and formal proof of Lebesgue's Dominated Convergence Theorem in the interactive theorem prover Matita , 2008, J. Formaliz. Reason..

[3]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[4]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[5]  J. Kurzweil Henstock-Kurzweil Integration: Its Relation to Topological Vector Spaces , 2000 .

[6]  Bas Spitters,et al.  Constructive algebraic integration theory , 2006, Ann. Pure Appl. Log..

[7]  Jaroslav Kurzweil Henstock-Kurzweil Integration , 2000 .

[8]  Thierry Coquand,et al.  Integrals and valuations , 2008, J. Log. Anal..

[9]  H. Weyl,et al.  Über die neue Grundlagenkrise der Mathematik , 1921 .

[10]  Peter Schuster,et al.  Classifying Dini's Theorem , 2006, Notre Dame J. Formal Log..

[11]  Xiaokang Yu,et al.  Lebesgue Convergence Theorems and Reverse Mathematics , 1994, Math. Log. Q..

[12]  A. Heyting Recent Progress in Intuitionistic Analysis , 1970 .

[13]  Claudio Sacerdoti Coen,et al.  Lebesgue's dominated convergence theorem in Bishop's style , 2012, Ann. Pure Appl. Log..

[14]  G. Bliss,et al.  Integrals of Lebesgue , 1917 .

[15]  F. Richman,et al.  Varieties of Constructive Mathematics: CONSTRUCTIVE ALGEBRA , 1987 .

[16]  Bas Spitters,et al.  Constructive algebraic integration theory without choice , 2005, Mathematics, Algorithms, Proofs.