Region-based shape control for a swarm of robots

This paper presents a region-based shape controller for a swarm of robots. In this control method, the robots move as a group inside a desired region while maintaining a minimum distance among themselves. Various shapes of the desired region can be formed by choosing the appropriate objective functions. The robots in the group only need to communicate with their neighbors and not the entire community. The robots do not have specific identities or roles within the group. Therefore, the proposed method does not require specific orders or positions of the robots inside the region and yet different formations can be formed for a swarm of robots. A Lyapunov-like function is presented for convergence analysis of the multi-robot systems. Simulation results illustrate the performance of the proposed controller.

[1]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[2]  Chien Chern Cheah,et al.  Region-Reaching Control of Robots , 2007, IEEE Transactions on Robotics.

[3]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[4]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[5]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[6]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[7]  Prabhakar R. Pagilla,et al.  Formation of a Group of Vehicles With Full Information Using Constraint Forces , 2007 .

[8]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[9]  Dimos V. Dimarogonas,et al.  A Leader-based Containment Control Strategy for Multiple Unicycles , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[10]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[11]  R. Beard,et al.  Formation feedback control for multiple spacecraft via virtual structures , 2004 .

[12]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[13]  Petter Ögren,et al.  A control Lyapunov function approach to multi-agent coordination , 2001 .

[14]  Suguru Arimoto,et al.  A New Feedback Method for Dynamic Control of Manipulators , 1981 .

[15]  Liu Hsu,et al.  Adaptive Formation Control Using Artificial Potentials for Euler-Lagrange Agents , 2008 .

[16]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[17]  Giancarlo Ferrari-Trecate,et al.  Containment Control in Mobile Networks , 2008, IEEE Transactions on Automatic Control.

[18]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[19]  Suguru Arimoto Control Theory of Nonlinear Mechanical Systems , 1996 .

[20]  Jianghai Hu,et al.  Optimal Multi-Agent Coordination Under Tree Formation Constraints , 2008, IEEE Transactions on Automatic Control.

[21]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[22]  Paul Keng-Chieh Wang Navigation strategies for multiple autonomous mobile robots moving in formation , 1991, J. Field Robotics.

[23]  Richard M. Murray,et al.  Recent Research in Cooperative Control of Multivehicle Systems , 2007 .

[24]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[25]  Thor I. Fossen,et al.  Formation Control of Marine Surface Craft , 2006 .

[26]  Veysel Gazi,et al.  Swarm aggregations using artificial potentials and sliding-mode control , 2005, IEEE Transactions on Robotics.

[27]  Petter Ögren,et al.  A Control Lyapunov Function Approach to , 2002 .

[28]  T.I. Fossen,et al.  Formation Control of Marine Surface Craft: A Lagrangian Approach , 2006, IEEE Journal of Oceanic Engineering.

[29]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[30]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[31]  Richard M. Murray,et al.  Recent Research in Cooperative Control of Multivehicle , 2007 .

[32]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[33]  Domenico Prattichizzo,et al.  Discussion of paper by , 2003 .

[34]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).