A Biologically Inspired Validity Measure for Comparison of Clustering Methods over Metabolic Data Sets
暂无分享,去创建一个
Georgina Stegmayer | Diego H. Milone | Fernando Carrari | Laura Kamenetzky | Mariana G. Lopez | F. Carrari | L. Kamenetzky | G. Stegmayer
[1] Matej Oresic,et al. An integrative approach for biological data mining and visualisation , 2008, Int. J. Data Min. Bioinform..
[2] Donald W. Bouldin,et al. A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] Douglas B. Kell,et al. Computational cluster validation in post-genomic data analysis , 2005, Bioinform..
[4] Francis D. Gibbons,et al. Judging the quality of gene expression-based clustering methods using gene annotation. , 2002, Genome research.
[5] Sueli Aparecida Mingoti,et al. Comparing SOM neural network with Fuzzy c , 2006, Eur. J. Oper. Res..
[6] Kazuki Saito,et al. Integrated Data Mining of Transcriptome and Metabolome Based on BL-SOM , 2006 .
[7] Loren H. Rieseberg,et al. lntrogression and Its Consequences in Plants , 1993 .
[8] Florence Forbes,et al. Gene Clustering via Integrated Markov Models Combining Individual and Pairwise Features , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[9] Xiaogang Wang,et al. A roadmap of clustering algorithms: finding a match for a biomedical application , 2008, Briefings Bioinform..
[10] Alexander Schliep,et al. Clustering cancer gene expression data: a comparative study , 2008, BMC Bioinformatics.
[11] Guy N. Brock,et al. clValid , an R package for cluster validation , 2008 .
[12] M. Hirai,et al. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'. , 2008, Trends in plant science.
[13] Susmita Datta,et al. Validation Measures for Clustering Algorithms Incorporating Biological Information , 2006, First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06).
[14] Robert Tibshirani,et al. Estimating the number of clusters in a data set via the gap statistic , 2000 .
[15] Susmita Datta,et al. Evaluation of clustering algorithms for gene expression data , 2006, BMC Bioinformatics.
[16] Steven J. Barrett. Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems , 2006, Genetic Programming and Evolvable Machines.
[17] Georgina Stegmayer,et al. Neural network model for integration and visualization of introgressed genome and metabolite data , 2009, 2009 International Joint Conference on Neural Networks.
[18] Teuvo Kohonen,et al. Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.
[19] Z. Lippman,et al. An integrated view of quantitative trait variation using tomato interspecific introgression lines. , 2007, Current opinion in genetics & development.
[20] Wei Pan,et al. Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data , 2006, Bioinform..
[21] Simon Kasif,et al. Seeing the forest for the trees: using the Gene Ontology to restructure hierarchical clustering , 2009, Bioinform..
[22] Anil K. Jain. Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..
[23] Gary B. Fogel,et al. Computational intelligence approaches for pattern discovery in biological systems , 2008, Briefings Bioinform..
[24] Lothar Willmitzer,et al. Interaction with Diurnal and Circadian Regulation Results in Dynamic Metabolic and Transcriptional Changes during Cold Acclimation in Arabidopsis , 2010, PloS one.
[25] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[26] Takayuki Tohge,et al. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function , 2010, Nature Protocols.
[27] Hiroyuki Ogata,et al. KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..
[28] V. Lacroix,et al. An Introduction to Metabolic Networks and Their Structural Analysis , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[29] O. Rubel,et al. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[30] Vasyl Pihur,et al. Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach , 2007, Bioinform..
[31] J. Dunn. Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .
[32] Ron Shamir,et al. Scoring clustering solutions by their biological relevance , 2003, Bioinform..
[33] 美弦 矢野,et al. <ファクトデータベース・フリーウェア特集号> 一括学習型自己組織化マップ(BL-SOM)を利用したメタボロームおよびトランスクリプトームデータの統合解析 , 2006 .
[34] Atul J. Butte,et al. Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks , 2005, BMC Bioinformatics.
[35] Zhen Hu,et al. BMC Bioinformatics BioMed Central Methodology article CLEAN: CLustering Enrichment ANalysis , 2009 .
[36] Sanghamitra Bandyopadhyay,et al. A Biologically Inspired Measure for Coexpression Analysis , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[37] Georgina Stegmayer,et al. *omeSOM: a software for clustering and visualization of transcriptional and metabolite data mined from interspecific crosses of crop plants , 2010, BMC Bioinformatics.
[38] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.