Finite Field Multiplier Using Redundant Representation
暂无分享,去创建一个
Ian F. Blake | M. Anwar Hasan | Shuhong Gao | Huapeng Wu | I. Blake | Shuhong Gao | Huapeng Wu | M. A. Hasan
[1] Rudolf Lide,et al. Finite fields , 1983 .
[2] Trieu-Kien Truong,et al. VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.
[3] Germain Drolet,et al. A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic Circuits , 1998, IEEE Trans. Computers.
[4] Alfred Wassermann. Konstruktion von Normalbasen , 1990 .
[5] ItohToshiya,et al. A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases , 1988 .
[6] Ian F. Blake,et al. Low complexity normal bases , 1989, Discret. Appl. Math..
[7] Joseph H. Silverman,et al. Fast Multiplication in Finite Fields GF(2N) , 1999, CHES.
[8] Toshiya Itoh,et al. Structure of Parallel Multipliers for a Class of Fields GF(2^m) , 1989, Inf. Comput..
[9] Gui Liang Feng. A VLSI Architecture for Fast Inversion in GF(2^m) , 1989, IEEE Trans. Computers.
[10] Thomas Beth,et al. Arithmetic Operations in GF(2 m ). , 1993 .
[11] S. Vanstone,et al. OPTIMAL NORMAL BASES IN GF(p”)* , 2002 .
[12] Shuhong Gao,et al. Optimal normal bases , 1992, Des. Codes Cryptogr..
[13] Gerald E. Sobelman,et al. Improved VLSI designs for multiplication and inversion in GF(2/sup M/) over normal bases , 2000, Proceedings of 13th Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541).
[14] Jack K. Wolf. Efficient circuits for multiplying in GF(2m) for certain values of m , 1992, Discret. Math..
[15] M. Anwar Hasan,et al. Efficient digit-serial normal basis multipliers over GF(2/sup m/) , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).
[16] Vijay K. Bhargava,et al. Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF(2^m) , 1992, IEEE Trans. Computers.
[17] Ronald C. Mullin,et al. Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..
[18] Dieter Gollmann,et al. Algorithm engineering for public key algorithms , 1989, IEEE J. Sel. Areas Commun..
[19] Dieter Gollmann,et al. Symmetry and Duality in Normal Basis Multiplication , 1988, AAECC.
[20] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[21] Ian F. Blake,et al. Highly Regular Architectures for Finite Field Computation Using Redundant Basis , 1999, CHES.
[22] Alfred Menezes,et al. Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.
[23] Gordon B. Agnew,et al. An implementation for a fast public-key cryptosystem , 2004, Journal of Cryptology.
[24] Shuhong Gao,et al. On orders of optimal normal basis generators , 1995 .
[25] Dieter Gollmann,et al. VLSI Design for Exponentiation in GF (2n) , 1990, AUSCRYPT.
[26] T. Itoh,et al. A Fast Algorithm for Computing Multiplicative Inverses in GF(2^m) Using Normal Bases , 1988, Inf. Comput..
[27] Joachim von zur Gathen,et al. Gauss Periods and Fast Exponentiation in Finite Fields (Extended Abstract) , 1995, LATIN.
[28] Joachim von zur Gathen,et al. Algorithms for Exponentiation in Finite Fields , 2000, J. Symb. Comput..
[29] Willi Geiselmann,et al. Redundant Representation of Finite Fields , 2001, Public Key Cryptography.
[30] V.K. Bhargava,et al. A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields , 1993, IEEE Trans. Computers.