Finite Field Multiplier Using Redundant Representation

This article presents simple and highly regular architectures for finite field multipliers using a redundant representation. The basic idea is to embed a finite field into a cyclotomic ring which is based on the elegant multiplicative structure of a cyclic group. One important feature of our architectures is that they provide area-time trade-offs which enable us to implement the multipliers in a partial-parallel/hybrid fashion. This hybrid architecture has great significance in its VLSI implementation in very large fields. The squaring operation using the redundant representation is simply a permutation of the coordinates. It is shown that, when there is an optimal normal basis, the proposed bit-serial and hybrid multiplier architectures have very low space complexity. Constant multiplication is also considered and is shown to have an advantage in using the redundant representation.

[1]  Rudolf Lide,et al.  Finite fields , 1983 .

[2]  Trieu-Kien Truong,et al.  VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.

[3]  Germain Drolet,et al.  A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic Circuits , 1998, IEEE Trans. Computers.

[4]  Alfred Wassermann Konstruktion von Normalbasen , 1990 .

[5]  ItohToshiya,et al.  A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases , 1988 .

[6]  Ian F. Blake,et al.  Low complexity normal bases , 1989, Discret. Appl. Math..

[7]  Joseph H. Silverman,et al.  Fast Multiplication in Finite Fields GF(2N) , 1999, CHES.

[8]  Toshiya Itoh,et al.  Structure of Parallel Multipliers for a Class of Fields GF(2^m) , 1989, Inf. Comput..

[9]  Gui Liang Feng A VLSI Architecture for Fast Inversion in GF(2^m) , 1989, IEEE Trans. Computers.

[10]  Thomas Beth,et al.  Arithmetic Operations in GF(2 m ). , 1993 .

[11]  S. Vanstone,et al.  OPTIMAL NORMAL BASES IN GF(p”)* , 2002 .

[12]  Shuhong Gao,et al.  Optimal normal bases , 1992, Des. Codes Cryptogr..

[13]  Gerald E. Sobelman,et al.  Improved VLSI designs for multiplication and inversion in GF(2/sup M/) over normal bases , 2000, Proceedings of 13th Annual IEEE International ASIC/SOC Conference (Cat. No.00TH8541).

[14]  Jack K. Wolf Efficient circuits for multiplying in GF(2m) for certain values of m , 1992, Discret. Math..

[15]  M. Anwar Hasan,et al.  Efficient digit-serial normal basis multipliers over GF(2/sup m/) , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[16]  Vijay K. Bhargava,et al.  Modular Construction of Low Complexity Parallel Multipliers for a Class of Finite Fields GF(2^m) , 1992, IEEE Trans. Computers.

[17]  Ronald C. Mullin,et al.  Optimal normal bases in GF(pn) , 1989, Discret. Appl. Math..

[18]  Dieter Gollmann,et al.  Algorithm engineering for public key algorithms , 1989, IEEE J. Sel. Areas Commun..

[19]  Dieter Gollmann,et al.  Symmetry and Duality in Normal Basis Multiplication , 1988, AAECC.

[20]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[21]  Ian F. Blake,et al.  Highly Regular Architectures for Finite Field Computation Using Redundant Basis , 1999, CHES.

[22]  Alfred Menezes,et al.  Guide to Elliptic Curve Cryptography , 2004, Springer Professional Computing.

[23]  Gordon B. Agnew,et al.  An implementation for a fast public-key cryptosystem , 2004, Journal of Cryptology.

[24]  Shuhong Gao,et al.  On orders of optimal normal basis generators , 1995 .

[25]  Dieter Gollmann,et al.  VLSI Design for Exponentiation in GF (2n) , 1990, AUSCRYPT.

[26]  T. Itoh,et al.  A Fast Algorithm for Computing Multiplicative Inverses in GF(2^m) Using Normal Bases , 1988, Inf. Comput..

[27]  Joachim von zur Gathen,et al.  Gauss Periods and Fast Exponentiation in Finite Fields (Extended Abstract) , 1995, LATIN.

[28]  Joachim von zur Gathen,et al.  Algorithms for Exponentiation in Finite Fields , 2000, J. Symb. Comput..

[29]  Willi Geiselmann,et al.  Redundant Representation of Finite Fields , 2001, Public Key Cryptography.

[30]  V.K. Bhargava,et al.  A Modified Massey-Omura Parallel Multiplier for a Class of Finite Fields , 1993, IEEE Trans. Computers.