Interactive Model-based Image Registration

We present an interactive technique for the registration of captured images of elastic and rigid body parts in which the user is given flexible control over material specific deformation properties. Our method can effectively handle arbitrary stiffness distributions and it achieves an accurate matching without sacrificing the physical correctness of the simulated deformations. The algorithm consists of three steps, which are performed iteratively until an optimal spatial mapping is determined: First, the optical flow is used to predict an initial image transformation. Second, a priori knowledge of the deformation model is used to refine the predicted field. A physics-based filter operation generates a transformation that is consistent with the model of linear elasticity. Third, the process is repeated using the displaced template image. To achieve accurate image deformations we employ implicit multigrid solvers using finite differences (optical flow) and finite elements (linear elasticity). The robustness and accuracy of our method is validated using synthetic and real clinical data composed of heterogeneous materials exhibiting different stiffness characteristics.

[1]  James R. Cooper,et al.  Optical Flow for Validating Medical Image Registration , 2003, SIP.

[2]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[3]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[4]  Valerie Duay,et al.  Non-rigid registration algorithm with spatially varying stiffness properties , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[5]  Lawrence H. Staib,et al.  Integrated approaches to non-rigid registration in medical images , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[6]  U. Clarenz,et al.  Towards fast non-rigid registration , 2003 .

[7]  C. Schnörr,et al.  Optical Stokes flow estimation: an imaging-based control approach , 2006 .

[8]  Rüdiger Westermann,et al.  Interactive Simulation and Rendering of Heterogeneous Deformable Bodies , 2005 .

[9]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[10]  Gareth Funka-Lea,et al.  Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials , 2004, ECCV Workshops CVAMIA and MMBIA.

[11]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[12]  David J. Hawkes,et al.  Validation of Non-rigid Registration Using Finite Element Methods , 2001, IPMI.

[13]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[14]  Stefan Henn,et al.  A Full Curvature Based Algorithm for Image Registration , 2006, Journal of Mathematical Imaging and Vision.

[15]  Joachim Weickert,et al.  Scale-Space Properties of Regularization Methods , 1999, Scale-Space.

[16]  Timo Kohlberger,et al.  A Multigrid Platform for Real-Time Motion Computation with Discontinuity-Preserving Variational Methods , 2006, International Journal of Computer Vision.

[17]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[18]  Jan Modersitzki,et al.  Curvature Based Image Registration , 2004, Journal of Mathematical Imaging and Vision.

[19]  Sven Kabus,et al.  On Elastic Image Registration with Varying Material Parameters , 2005, Bildverarbeitung für die Medizin.

[20]  Joachim Hornegger,et al.  A variational approach to spatially dependent non-rigid registration , 2006, SPIE Medical Imaging.

[21]  Karl Rohr,et al.  A Biomechanical Model of the Human Head for Elasitc Registration of MR-Images , 1999, Bildverarbeitung für die Medizin.

[22]  K. Bathe Finite Element Procedures , 1995 .

[23]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[24]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[25]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[26]  Rüdiger Westermann,et al.  Workshop on Virtual Reality Interaction and Physical Simulation (2005) a Multigrid Framework for Real-time Simulation of Deformable Volumes , 2022 .

[27]  Josien P. W. Pluim,et al.  Nonrigid registration with adaptive content-based filtering of the deformation field , 2005, SPIE Medical Imaging.

[28]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..