Design and operation of intermodal transportation network in the Marmara region of Turkey

This paper presents a multi-objective optimization model for integrating different transportation modes in the design and operation of an intermodal transportation network in a geographical region. The problem is formulated as a mixed-integer optimization problem that accounts for time and congestion dependent vehicle speeds. We present modeling approach, data analysis and outline the important characteristics of the mathematical programming problem for minimization of transportation cost and time simultaneously by using the augmented ∊-constraint method. The proposed approach is illustrated on a real world case using data from Marmara region where approximately 50% industrial goods and services in Turkey are produced.

[1]  A. McKinnon THE EFFECT OF TRAFFIC CONGESTION ON THE EFFICIENCY OF LOGISTICAL OPERATIONS. IN: TRANSPORT LOGISTICS , 1999 .

[2]  Ralph E. Steuer,et al.  Computational experience concerning payoff tables and minimum criterion values over the efficient set , 1988 .

[3]  C. Richard Cassady,et al.  DEVELOPING A STANDARD DEFINITION OF INTERMODAL TRANSPORTATION , 2000 .

[4]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[5]  Dominique Peeters,et al.  Modelling a rail/road intermodal transportation system , 2004 .

[6]  Di Wu,et al.  Pareto-improving congestion pricing on multimodal transportation networks , 2011, Eur. J. Oper. Res..

[7]  Athanasios K. Ziliaskopoulos,et al.  An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays , 2000, Eur. J. Oper. Res..

[8]  Hokey Min,et al.  INTERNATIONAL INTERMODAL CHOICES VIA CHANCE-CONSTRAINED GOAL PROGRAMMING , 1991 .

[9]  Dincer Konur,et al.  Analysis of traffic congestion costs in a competitive supply chain , 2011 .

[10]  D. Z. Wang,et al.  Global optimization method for network design problem with stochastic user equilibrium , 2015 .

[11]  H. D. Ratliff,et al.  MODELING INTERMODAL ROUTING. , 1993 .

[12]  Maja Piecyk,et al.  Traffic congestion, reliability and logistical performance: a multi-sectoral assessment , 2009 .

[13]  Hong Kam Lo,et al.  Global Optimum of the Linearized Network Design Problem with Equilibrium Flows , 2010 .

[14]  B. S. Boardman,et al.  Computer assisted routing of intermodal shipments , 1997 .

[15]  E M Malstrom,et al.  INTERMODAL TRANSPORTATION COST ANALYSIS TABLES , 1999 .

[16]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[17]  Hugues Marchand,et al.  Pour une localisation optimale des centres de transbordement intermodaux entre réseaux de transport: formulation et extensions , 2001 .

[18]  Yehuda Hayuth,et al.  Intermodality : concept and practice : structural changes in the ocean freight transport industry , 1987 .

[19]  Frank Southworth,et al.  Intermodal and international freight network modeling , 2000 .

[20]  R Akcelik,et al.  Travel time functions for transport planning purposes: Davidson's function, its time dependent form and alternative travel time function , 1991 .

[21]  K B Davidson,et al.  THE THEORETICAL BASIS OF A FLOW-TRAVEL TIME RELATIONSHIP FOR USE IN TRANSPORTATION PLANNING , 1978 .

[22]  George Mavrotas,et al.  A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..

[23]  Michel Minoux,et al.  Networks synthesis and optimum network design problems: Models, solution methods and applications , 1989, Networks.

[24]  Cathy Macharis,et al.  Opportunities for OR in intermodal freight transport research: A review , 2004, Eur. J. Oper. Res..

[25]  Kaisa Miettinen,et al.  Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation , 1999, J. Oper. Res. Soc..

[26]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[27]  G. R. Reeves,et al.  Minimum values over the efficient set in multiple objective decision making , 1988 .

[28]  Hai Yang,et al.  Global optimization methods for the discrete network design problem , 2013 .

[29]  Rupinder Singh,et al.  Accuracy and Performance of Improved Speed-Flow Curves , 1998 .

[30]  George Mavrotas,et al.  Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..

[31]  Kck Chih,et al.  THE INTERMODAL EQUIPMENT DISTRIBUTION MODEL , 1987 .

[32]  H. Spiess CONICAL VOLUME-DELAY FUNCTIONS , 1990 .

[33]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[34]  W. Y. Szeto,et al.  A novel discrete network design problem formulation and its global optimization solution algorithm , 2015 .

[35]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[36]  James H. Bookbinder,et al.  INTERMODAL ROUTING OF CANADA-MEXICO SHIPMENTS UNDER NAFTA , 1998 .

[37]  Mark S. Daskin,et al.  AN INTEGRATED MODEL OF FACILITY LOCATION AND TRANSPORTATION NETWORK DESIGN , 2001 .

[38]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[39]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[40]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms and Applications , 1995 .

[41]  Alexander Skabardonis,et al.  Urban Arterial Speed–Flow Equations for Travel Demand Models , 2006 .

[42]  R Akcelik RELATING FLOW, DENSITY, SPEED AND TRAVEL TIME MODELS FOR UNINTERRUPTED AND INTERRUPTED TRAFFIC. , 1996 .

[43]  K Trusty,et al.  A FEASIBILITY ASSESSMENT OF TRUCK-BARGE INTERMODAL FREIGHT TRANSPORTATION , 1998 .

[44]  Anna Nagurney,et al.  A multiclass, multicriteria traffic network equilibrium model , 2000 .

[45]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..