Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology.

Cerebral malaria (CM) is a leading cause of death in Plasmodium falciparum infections. In the Plasmodium berghei ANKA (PbA) murine model, CM pathogenesis is associated with low nitric oxide (NO) bioavailability and brain microcirculatory complications, with a marked decrease in cerebral blood flow, vasoconstriction, vascular plugging by adherent cells, and hemorrhages. Using intravital microscopy through a closed cranial window, here we show that NO supplementation in the form of a NO donor (dipropylenetriamine NONOate [DPTA-NO]) prevented vasoconstriction and improved blood flow in pial vessels of PbA-infected mice. Arterioles and venules of smaller diameters (20-35.5 μm) showed better response to treatment than vessels of larger diameters (36-63 μm). Exogenous NO provided protection against brain hemorrhages (mean, 1.4 vs 24.5 hemorrhagic foci per section) and inflammation (mean, 2.5 vs 10.9 adherent leukocytes per 100 μm vessel length) compared with saline treatment. In conclusion, NO protection against CM is associated with improved brain microcirculatory hemodynamics and decreased vascular pathology.

[1]  Baolin Wu,et al.  Cerebral Malaria in Children Is Associated With Long-term Cognitive Impairment , 2008, Pediatrics.

[2]  K. Sugita,et al.  Regional differences in cerebral vasomotor control by nitric oxide , 1995, Brain Research Bulletin.

[3]  C. Ince,et al.  Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. , 2008, The Journal of infectious diseases.

[4]  R. de Caterina,et al.  Inhibition of endothelial cell activation by nitric oxide donors. , 2000, The Journal of pharmacology and experimental therapeutics.

[5]  J. Frangos,et al.  Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria , 2006, Nature Medicine.

[6]  R. Bryan,et al.  Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. , 1999, The American journal of physiology.

[7]  Julie A Simpson,et al.  An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. , 2003, The American journal of tropical medicine and hygiene.

[8]  J. Frangos,et al.  Plasmodium berghei Resists Killing by Reactive Oxygen Species , 2005, Infection and Immunity.

[9]  L. Carvalho Murine cerebral malaria: how far from human cerebral malaria? , 2010, Trends in parasitology.

[10]  J. Frangos,et al.  Immunopathology and Infectious Diseases Murine Cerebral Malaria Is Associated with a Vasospasm-Like Microcirculatory Dysfunction , and Survival upon Rescue Treatment Is Markedly Increased by Nimodipine , 2010 .

[11]  L. Xiao,et al.  Role of eicosanoids in the pathogenesis of murine cerebral malaria. , 1999, The American journal of tropical medicine and hygiene.

[12]  V. Heussler,et al.  Apoptosis in experimental cerebral malaria: spatial profile of cleaved caspase‐3 and ultrastructural alterations in different disease stages , 2007, Neuropathology and applied neurobiology.

[13]  C. Dawson,et al.  Pulmonary arterial dilation by inhaled NO: arterial diameter, NO concentration relationship. , 2001, Journal of applied physiology.

[14]  C. Newton,et al.  Pathogenesis, clinical features, and neurological outcome of cerebral malaria , 2005, The Lancet Neurology.

[15]  P. Kubes,et al.  Nitric oxide: an endogenous modulator of leukocyte adhesion. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[16]  V. Heussler,et al.  Behavioural and histopathological alterations in mice with cerebral malaria , 2006, Neuropathology and applied neurobiology.

[17]  Carlos Portera-Cailliau,et al.  A craniotomy surgery procedure for chronic brain imaging. , 2008, Journal of visualized experiments : JoVE.

[18]  H. Tsukahara,et al.  Nitric oxide modulation of erythropoiesis in rats. , 1997, Blood.

[19]  F. Faraci Role of endothelium-derived relaxing factor in cerebral circulation: large arteries vs. microcirculation. , 1991, The American journal of physiology.

[20]  E. Keller,et al.  Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought , 2009, Neurological research.

[21]  Susan Lewallen,et al.  Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. , 2009, The Journal of infectious diseases.

[22]  L. F. Fajardo,et al.  Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. , 1987, Science.

[23]  R. Price,et al.  Impaired nitric oxide bioavailability and l-arginine–reversible endothelial dysfunction in adults with falciparum malaria , 2007, The Journal of experimental medicine.

[24]  Sunhee C. Lee,et al.  Endothelin in a Murine Model of Cerebral Malaria , 2006, Experimental biology and medicine.

[25]  L. Rénia,et al.  On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. , 2002, Journal of immunology.

[26]  R. Price,et al.  Relationship of cell-free hemoglobin to impaired endothelial nitric oxide bioavailability and perfusion in severe falciparum malaria. , 2009, Journal of Infectious Diseases.

[27]  S. Confort-Gouny,et al.  Imaging Experimental Cerebral Malaria In Vivo: Significant Role of Ischemic Brain Edema , 2005, The Journal of Neuroscience.

[28]  B. Lell,et al.  Opposed circulating plasma levels of endothelin-1 and C-type natriuretic peptide in children with Plasmodium falciparum malaria , 2008, Malaria Journal.

[29]  N. Hunt,et al.  Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. , 2003, Trends in immunology.

[30]  E. Riley,et al.  Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease , 2009, Parasitology.

[31]  D. Sullivan,et al.  Platelet factor 4 mediates inflammation in experimental cerebral malaria. , 2008, Cell host & microbe.

[32]  A. Buguet,et al.  Recombinant human erythropoietin prevents the death of mice during cerebral malaria. , 2006, The Journal of infectious diseases.

[33]  B. S. Schneider,et al.  Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease , 2008, The Journal of experimental medicine.

[34]  Samir N. Patel,et al.  C5 deficiency and C5a or C5aR blockade protects against cerebral malaria , 2008, The Journal of experimental medicine.

[35]  S. Kahn,et al.  On the Fate of Extracellular Hemoglobin and Heme in Brain , 2022 .

[36]  Sunhee C. Lee,et al.  Reduced cerebral blood flow and N-acetyl aspartate in a murine model of cerebral malaria , 2005, Parasitology Research.

[37]  H. Winn,et al.  Regulation of cerebral vasculature in normal and ischemic brain , 2008, Neuropharmacology.

[38]  F. Costa,et al.  Newer Aspects of the Pathophysiology of Sickle Cell Disease Vaso-Occlusion , 2009, Hemoglobin.

[39]  L. Rénia,et al.  On the Pathogenic Role of Brain-Sequestered αβ CD8+ T Cells in Experimental Cerebral Malaria1 , 2002, The Journal of Immunology.

[40]  R. Snow,et al.  The burden of malaria mortality among African children in the year 2000. , 2006, International journal of epidemiology.

[41]  J. Garthwaite,et al.  Nitric oxide and its role in ischaemic brain injury. , 2004, Current molecular medicine.

[42]  J. Nolan,et al.  A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. , 2006, Trends in parasitology.

[43]  R. Helbok,et al.  Complement factors C1q, C3 and C5 in brain and serum of mice with cerebral malaria , 2008, Malaria Journal.

[44]  D. Granger,et al.  Regulation of Endothelial Cell Adhesion Molecule Expression in an Experimental Model of Cerebral Malaria , 2002, Microcirculation.

[45]  Mahalia S Desruisseaux,et al.  Cerebral malaria: a vasculopathy. , 2010, The American journal of pathology.

[46]  N. Toda,et al.  Cerebral Blood Flow Regulation by Nitric Oxide: Recent Advances , 2009, Pharmacological Reviews.

[47]  T. M. Souza,et al.  Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol , 2010, Malaria Journal.

[48]  P. Cabrales,et al.  Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions. , 2006, American journal of physiology. Heart and circulatory physiology.

[49]  C. Ábrahám,et al.  Recombinant human tumor necrosis factor α constricts pial arterioles and increases blood-brain barrier permeability in newborn piglets , 1992, Neuroscience Letters.