Simulation of a diffusion process by using the importance sampling paradigm

We construct in this paper a Monte Carlo method in order to approach solutions of multi-dimensional Stochastic Differential Equations processes which relies on the importance sampling technique. Our method is based on the random walk on squares/rectangles method and the main interest of this construction is that the weights are easily computed from the density of the one-dimensional Brownian motion. The advantage we take on the Euler scheme is that this method allows us to get a better simulation of diffusions when one has really to take care of the boundary conditions. Moreover, it provides a good alternative to perform variance reduction techniques and simulation of rare events.

[1]  Bouhari Arouna,et al.  Adaptative Monte Carlo Method, A Variance Reduction Technique , 2004, Monte Carlo Methods Appl..

[2]  Mireille Bossy,et al.  A symmetrized Euler scheme for an efficient approximation of reflected diffusions , 2004, Journal of Applied Probability.

[3]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[4]  F. Gland,et al.  Genetic genealogical models in rare event analysis , 2006 .

[5]  Nigel J. Newton Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..

[6]  R. Pettersson Approximations for stochastic differential equations with reflecting convex boundaries , 1995 .

[7]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[8]  Fabien Campillo,et al.  A Monte Carlo method without grid for a fractured porous domain model , 2002, Monte Carlo Methods Appl..

[9]  G. Mil’shtein,et al.  An algorithm for random walks over small ellipsoids for solving the general Dirichlet problem , 1993 .

[10]  Michael V. Tretyakov,et al.  SIMULATION OF A SPACE-TIME BOUNDED DIFFUSION , 1999 .

[11]  Arturo Kohatsu-Higa,et al.  Variance Reduction Methods for Simulation of Densities on Wiener Space , 2002, SIAM J. Numer. Anal..

[12]  Mark A. Pinsky Partial differential equations and boundary-value problems with applications , 1991 .

[13]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[14]  V. Linetsky On the transition densities for reflected diffusions , 2005, Advances in Applied Probability.

[15]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[16]  Ahmed Kebaier Réduction de variance et discrétisation d'équations différentielles stochastiques : théorèmes limites presque sûres pour les martingales quasi-continues à gauche , 2005 .

[17]  GANG ZOU,et al.  Robust Variance Reduction for Random Walk Methods , 2004, SIAM J. Sci. Comput..

[18]  Dirk Veestraeten,et al.  The Conditional Probability Density Function for a Reflected Brownian Motion , 2004 .

[19]  O. Bardou Contrôle dynamique des erreurs de simulation et d'estimation de processus de diffusion , 2005 .

[20]  Antoine Lejay,et al.  A Random Walk on Rectangles Algorithm , 2006 .

[21]  Emmanuel Gobet,et al.  Efficient schemes for the weak approximation of reflected diffusions , 2001, Monte Carlo Methods Appl..

[22]  David Heath,et al.  A variance reduction technique based on integral representations , 2002 .

[23]  A. Haji-sheikh,et al.  Heat Conduction Using Green's Function , 1992 .

[24]  L. Slominski Euler's approximations of solutions of SDEs with reflecting boundary , 2001 .

[25]  Nikolai A. Simonov,et al.  Random Walk Algorithms for Estimating Effective Properties of Digitized Porous Media * , 2004, Monte Carlo Methods Appl..

[26]  Grant D. Lythe,et al.  Exponential Timestepping with Boundary Test for Stochastic Differential Equations , 2003, SIAM J. Sci. Comput..

[27]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .