Robust ordinal regression for value functions handling interacting criteria

We present a new method called UTAGMS–INT for ranking a finite set of alternatives evaluated on multiple criteria. It belongs to the family of Robust Ordinal Regression (ROR) methods which build a set of preference models compatible with preference information elicited by the Decision Maker (DM). The preference model used by UTAGMS–INT is a general additive value function augmented by two types of components corresponding to ‘‘bonus’’ or ‘‘penalty’’ values for positively or negatively interacting pairs of criteria, respectively. When calculating value of a particular alternative, a bonus is added to the additive component of the value function if a given pair of criteria is in a positive synergy for performances of this alternative on the two criteria. Similarly, a penalty is subtracted from the additive component of the value function if a given pair of criteria is in a negative synergy for performances of the considered alternative on the two criteria. The preference information elicited by the DM is composed of pairwise comparisons of some reference alternatives, as well as of comparisons of some pairs of reference alternatives with respect to intensity of preference, either comprehensively or on a particular criterion. In UTAGMS–INT, ROR starts with identification of pairs of interacting criteria for given preference information by solving a mixed-integer linear program. Once the interacting pairs are validated by the DM, ROR continues calculations with the whole set of compatible value functions handling the interacting criteria, to get necessary and possible preference relations in the considered set of alternatives. A single representative value function can be calculated to attribute specific scores to alternatives. It also gives values to bonuses and penalties. UTAGMS–INT handles quite general interactions among criteria and provides an interesting alternative to the Choquet integral.

[1]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[2]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[3]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[4]  S. Greco,et al.  Necessary and possible preference structures , 2013 .

[5]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..

[6]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[7]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[8]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[9]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[10]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[11]  Salvatore Greco,et al.  The Choquet integral with respect to a level dependent capacity , 2011, Fuzzy Sets Syst..

[12]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..

[13]  Bernard Roy,et al.  À propos de la signification des dépendances entre critères : quelle place et quels modes de prise en compte pour l'aide à la décision ? , 2009, RAIRO Oper. Res..

[14]  S. Greco Bipolar Sugeno and Choquet integrals , 2002 .

[15]  Ronen I. Brafman,et al.  UCP-Networks: A Directed Graphical Representation of Conditional Utilities , 2001, UAI.

[16]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[17]  Salvatore Greco,et al.  Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.

[18]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[19]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[20]  Brice Mayag,et al.  Élaboration d'une démarche constructive prenant en compte les interactions entre critères en aide multicritère à la décision , 2010 .

[21]  S. Greco,et al.  MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria , 2014 .

[22]  Roman Słowiński,et al.  Questions guiding the choice of a multicriteria decision aiding method , 2013 .

[23]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Michel Grabisch,et al.  Un algorithme de détermination de la capacité pour l'intégrale de Choquet 2-additive , 2008 .

[25]  Salvatore Greco,et al.  Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..

[26]  Salvatore Greco,et al.  Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..

[27]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..

[28]  Patrice Perny,et al.  GAI Networks for Decision Making under Certainty , 2005, IJCAI 2005.

[29]  Evangelos Grigoroudis,et al.  Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method , 2002, Eur. J. Oper. Res..

[30]  Christophe Labreuche,et al.  Fuzzy Measures and Integrals in MCDA , 2004 .

[31]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[32]  Salvatore Greco,et al.  Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..

[33]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[34]  Christophe Labreuche,et al.  Generalized Choquet-like aggregation functions for handling bipolar scales , 2006, Eur. J. Oper. Res..

[35]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[36]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[37]  Peter C. Fishburn,et al.  INTERDEPENDENCE AND ADDITIVITY IN MULTIVARIATE, UNIDIMENSIONAL EXPECTED UTILITY TIHEORY* , 1967 .

[38]  G. Choquet Theory of capacities , 1954 .

[39]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..