Robust ordinal regression for value functions handling interacting criteria
暂无分享,去创建一个
[1] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[2] J. Siskos. Assessing a set of additive utility functions for multicriteria decision-making , 1982 .
[3] Bernard Roy,et al. Aide multicritère à la décision : méthodes et cas , 1993 .
[4] S. Greco,et al. Necessary and possible preference structures , 2013 .
[5] Salvatore Greco,et al. Multiple Criteria Hierarchy Process in Robust Ordinal Regression , 2012, Decis. Support Syst..
[6] Michel Grabisch,et al. K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..
[7] S French,et al. Multicriteria Methodology for Decision Aiding , 1996 .
[8] Salvatore Greco,et al. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..
[9] M. Grabisch. The application of fuzzy integrals in multicriteria decision making , 1996 .
[10] Matthias Ehrgott,et al. Trends in Multiple Criteria Decision Analysis , 2010 .
[11] Salvatore Greco,et al. The Choquet integral with respect to a level dependent capacity , 2011, Fuzzy Sets Syst..
[12] Milosz Kadzinski,et al. Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..
[13] Bernard Roy,et al. À propos de la signification des dépendances entre critères : quelle place et quels modes de prise en compte pour l'aide à la décision ? , 2009, RAIRO Oper. Res..
[14] S. Greco. Bipolar Sugeno and Choquet integrals , 2002 .
[15] Ronen I. Brafman,et al. UCP-Networks: A Directed Graphical Representation of Conditional Utilities , 2001, UAI.
[16] Michel Grabisch,et al. A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..
[17] Salvatore Greco,et al. Rough Sets in Decision Making , 2009, Encyclopedia of Complexity and Systems Science.
[18] José Rui Figueira,et al. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..
[19] Milosz Kadzinski,et al. Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..
[20] Brice Mayag,et al. Élaboration d'une démarche constructive prenant en compte les interactions entre critères en aide multicritère à la décision , 2010 .
[21] S. Greco,et al. MUSA-INT: Multicriteria customer satisfaction analysis with interacting criteria , 2014 .
[22] Roman Słowiński,et al. Questions guiding the choice of a multicriteria decision aiding method , 2013 .
[23] R. L. Keeney,et al. Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[24] Michel Grabisch,et al. Un algorithme de détermination de la capacité pour l'intégrale de Choquet 2-additive , 2008 .
[25] Salvatore Greco,et al. Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..
[26] Salvatore Greco,et al. Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..
[27] Milosz Kadzinski,et al. Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..
[28] Patrice Perny,et al. GAI Networks for Decision Making under Certainty , 2005, IJCAI 2005.
[29] Evangelos Grigoroudis,et al. Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method , 2002, Eur. J. Oper. Res..
[30] Christophe Labreuche,et al. Fuzzy Measures and Integrals in MCDA , 2004 .
[31] Janusz Zalewski,et al. Rough sets: Theoretical aspects of reasoning about data , 1996 .
[32] Salvatore Greco,et al. Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral , 2010, Eur. J. Oper. Res..
[33] Salvatore Greco,et al. Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.
[34] Christophe Labreuche,et al. Generalized Choquet-like aggregation functions for handling bipolar scales , 2006, Eur. J. Oper. Res..
[35] Ralph L. Keeney,et al. Decisions with multiple objectives: preferences and value tradeoffs , 1976 .
[36] Jean-Luc Marichal,et al. Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..
[37] Peter C. Fishburn,et al. INTERDEPENDENCE AND ADDITIVITY IN MULTIVARIATE, UNIDIMENSIONAL EXPECTED UTILITY TIHEORY* , 1967 .
[38] G. Choquet. Theory of capacities , 1954 .
[39] Salvatore Greco,et al. Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..