Hyper-Sparse Optimal Aggregation
暂无分享,去创建一个
[1] H. Triebel. Theory Of Function Spaces , 1983 .
[2] M. Cedex. Hyper-Sparse Optimal Aggregation , 2011 .
[3] N. Meinshausen,et al. Stability selection , 2008, 0809.2932.
[4] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[5] P. Massart,et al. An Adaptive Compression Algorithm in Besov Spaces , 2000 .
[6] G. Kerkyacharian,et al. Nonlinear estimation in anisotropic multi-index denoising , 2001 .
[7] S. Mendelson,et al. Regularization in kernel learning , 2010, 1001.2094.
[8] D. Picard,et al. Non Linear Estimation in Anisotropic Multiindex Denoising , 1999 .
[9] Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation , 2007, math/0703854.
[10] S. Mendelson,et al. Aggregation via empirical risk minimization , 2009 .
[11] A. Juditsky,et al. Learning by mirror averaging , 2005, math/0511468.
[12] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[13] S. Mendelson,et al. Sharper lower bounds on the performance of the empirical risk minimization algorithm , 2011, 1102.4983.
[14] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[15] Arnak S. Dalalyan,et al. Aggregation by Exponential Weighting and Sharp Oracle Inequalities , 2007, COLT.
[16] Shahar Mendelson,et al. Lower Bounds for the Empirical Minimization Algorithm , 2008, IEEE Transactions on Information Theory.
[17] Marc Hoffmann. Random rates in anisotropic regression , 2002 .
[18] Michael H. Neumann. MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .
[19] A. Tsybakov,et al. Introduction à l'estimation non-paramétrique , 2003 .
[20] Yuhong Yang. Mixing Strategies for Density Estimation , 2000 .
[21] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[22] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .
[23] Yuhong Yang. Aggregating regression procedures to improve performance , 2004 .
[24] Guillaume Lecué. Lower Bounds and Aggregation in Density Estimation , 2006, J. Mach. Learn. Res..
[25] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[26] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[27] D. Mason,et al. Some universal results on the behavior of increments of partial sums , 1996 .
[28] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[29] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[30] S. Loustau. Penalized empirical risk minimization over Besov spaces , 2009 .
[31] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[32] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[33] S. Geer. Applications of empirical process theory , 2000 .
[34] Alexander V. Nazin,et al. Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging , 2005, Probl. Inf. Transm..
[35] Peter L. Bartlett,et al. The importance of convexity in learning with squared loss , 1998, COLT '96.
[36] G. Wahba. Spline models for observational data , 1990 .
[37] J. Picard,et al. Statistical learning theory and stochastic optimization : École d'eté de probabilités de Saint-Flour XXXI - 2001 , 2004 .
[38] R. Adamczak. A tail inequality for suprema of unbounded empirical processes with applications to Markov chains , 2007, 0709.3110.
[39] D. Picard,et al. Nonlinear Estimation in Anisotropic Multi-Index Denoising. Sparse Case , 2008 .
[40] M. Talagrand. New concentration inequalities in product spaces , 1996 .
[41] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[42] Gerard Kerkyacharian,et al. Replicant compression coding in Besov spaces , 2003 .
[43] Shahar Mendelson,et al. On the Performance of Kernel Classes , 2003, J. Mach. Learn. Res..
[44] S. Mendelson,et al. On the optimality of the aggregate with exponential weights for low temperatures , 2013, 1303.5180.