Sharper uncertainty principles for the windowed Fourier transform

The windowed Fourier transform replaces the Fourier transform’s sinusoidal wave by the product of a sinusoid and a window which is localized in time. It has been shown to represent a powerful tool for non-stationary signals and time-varying systems. In the present paper, we investigate the uncertainty principles in the short-time spectral domain. Two sharper uncertainty principles for complex signals are proposed. The tighter lower bounds are related to the covariance of time and frequency, and can be achieved by complex chirp signals with Gaussian envelope. The results presented in this paper explain interesting phenomena in signal recovery problems where there is an interplay of missing data and is time-limiting.

[1]  Martin J. Bastiaans,et al.  On fractional Fourier transform moments , 2000, IEEE Signal Processing Letters.

[2]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[3]  Saifallah Ghobber,et al.  On uncertainty principles in the finite dimensional setting , 2009, ArXiv.

[4]  A. Galbis,et al.  Localization Operators and an Uncertainty Principle for the Discrete Short Time Fourier Transform , 2014 .

[5]  Christina Gloeckner Foundations Of Time Frequency Analysis , 2016 .

[6]  Hans Maassen A discrete entropic uncertainty relation , 1990 .

[7]  J. Mashreghi Representation Theorems in Hardy Spaces , 2009 .

[8]  Tao Qian,et al.  Analytic Phase Derivatives, All-Pass Filters and Signals of Minimum Phase , 2011, IEEE Transactions on Signal Processing.

[9]  Tao Qian,et al.  Hardy–Sobolev derivatives of phase and amplitude, and their applications , 2012 .

[10]  Jingang Zhong,et al.  Multiscale windowed Fourier transform for phase extraction of fringe patterns. , 2007, Applied optics.

[11]  I. Bialynicki-Birula,et al.  Entropic uncertainty relations , 1984 .

[12]  Tao Qian,et al.  A Tighter Uncertainty Principle for Linear Canonical Transform in Terms of Phase Derivative , 2013, IEEE Transactions on Signal Processing.

[13]  Leon Cohen,et al.  Time Frequency Analysis: Theory and Applications , 1994 .

[14]  Chengchun Hao Introduction to Harmonic Analysis , 2016 .

[15]  J. Morais,et al.  On Uncertainty Principle for Quaternionic Linear Canonical Transform , 2013 .

[16]  Haldun M. Ozaktas,et al.  Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transforms , 1995 .

[17]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[18]  Tao Qian,et al.  Hardy-Sobolev Spaces Decomposition in Signal Analysis , 2011 .

[19]  R. Cooke Real and Complex Analysis , 2011 .

[20]  Entropic uncertainty relation , 1974 .

[21]  M. Nimchek Banach spaces of analytic functions , 1996 .

[22]  Vikram M. Gadre,et al.  An uncertainty principle for real signals in the fractional Fourier transform domain , 2001, IEEE Trans. Signal Process..

[23]  P. Tchamitchian,et al.  Hardy Sobolev spaces on strongly Lipschitz domains of Rn , 2005 .

[24]  Anders Vretblad,et al.  Fourier Analysis and Its Applications , 2005 .

[25]  Peter Colwell Blaschke Products: Bounded Analytic Functions , 1985 .

[26]  Yan Yang,et al.  Uncertainty principles for hypercomplex signals in the linear canonical transform domains , 2014, Signal Process..

[27]  Santanu Manna,et al.  The fractional Fourier transform and its applications , 2012 .

[28]  Freidrich Riesz,et al.  Über die Randwerte einer analytischen Funktion , 1923 .

[29]  Leon Cohen,et al.  Uncertainty principles of the short-time Fourier transform , 1995, Optics & Photonics.

[30]  D. Mustard,et al.  Uncertainty principles invariant under the fractional Fourier transform , 1991, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[31]  K. K. Sharma New inequalities for signal spreads in linear canonical transform domains , 2010, Signal Process..

[32]  Simon Haykin,et al.  Modern signal processing , 1988 .

[33]  D. Donoho,et al.  Uncertainty principles and signal recovery , 1989 .

[34]  Leon Cohen,et al.  The uncertainty principle: global, local, or both? , 2004, IEEE Transactions on Signal Processing.

[35]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[36]  Jont B. Allen,et al.  Short term spectral analysis, synthesis, and modification by discrete Fourier transform , 1977 .

[37]  P. Duren Theory of Hp Spaces , 2000 .

[38]  Roy Meshulam,et al.  An uncertainty inequality for groups of order pq , 1992, Eur. J. Comb..

[39]  I. Bialynicki-Birula,et al.  Entropic uncertainty relations in quantum mechanics , 1985 .

[40]  Kit Ian Kou,et al.  Paley–Wiener theorems and uncertainty principles for the windowed linear canonical transform , 2012 .

[41]  Leon Cohen The uncertainty principles of windowed wave functions , 2000 .

[42]  K. Wódkiewicz On the operational uncertainty relation , 1987 .