Cancellous bone and theropod dinosaur locomotion. Part II—a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates

This paper is the second of a three-part series that investigates the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and therefore has the potential to provide insight into locomotor biomechanics in extinct tetrapod vertebrates such as dinosaurs. Here in Part II, a new biomechanical modelling approach is outlined, one which mechanistically links cancellous bone architectural patterns with three-dimensional musculoskeletal and finite element modelling of the hindlimb. In particular, the architecture of cancellous bone is used to derive a single ‘characteristic posture’ for a given species—one in which bone continuum-level principal stresses best align with cancellous bone fabric—and thereby clarify hindlimb locomotor biomechanics. The quasi-static approach was validated for an extant theropod, the chicken, and is shown to provide a good estimate of limb posture at around mid-stance. It also provides reasonable predictions of bone loading mechanics, especially for the proximal hindlimb, and also provides a broadly accurate assessment of muscle recruitment insofar as limb stabilization is concerned. In addition to being useful for better understanding locomotor biomechanics in extant species, the approach hence provides a new avenue by which to analyse, test and refine palaeobiomechanical hypotheses, not just for extinct theropods, but potentially many other extinct tetrapod groups as well.

[1]  J. Hutchinson,et al.  Three-dimensional anatomy of the ostrich (Struthio camelus) knee joint , 2014, PeerJ.

[2]  Jonas Rubenson,et al.  Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization , 2016, Journal of The Royal Society Interface.

[3]  D G Lloyd,et al.  The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs , 2018, PloS one.

[4]  A. Yates,et al.  What Lies Beneath: Sub-Articular Long Bone Shape Scaling in Eutherian Mammals and Saurischian Dinosaurs Suggests Different Locomotor Adaptations for Gigantism , 2013, PloS one.

[5]  R. Huiskes,et al.  Proposal for the regulatory mechanism of Wolff's law , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[6]  In Gwun Jang,et al.  Application of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational efficiency , 2010 .

[7]  R Huiskes,et al.  A theoretical framework for strain-related trabecular bone maintenance and adaptation. , 2005, Journal of biomechanics.

[8]  S J Hollister,et al.  Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. , 2001, Journal of biomechanical engineering.

[9]  J. Hutchinson,et al.  The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations , 2010, Journal of anatomy.

[10]  J. Meakin,et al.  Compression or Tension? the Stress Distribution in the Proximal Femur , 2022 .

[11]  T. Ryan,et al.  Preliminary observations on the calcaneal trabecular microarchitecture of extant large-bodied hominoids. , 2006, American journal of physical anthropology.

[12]  A A Biewener,et al.  Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse. , 1996, Bone.

[13]  Taiji Adachi,et al.  Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. , 2002, Journal of biomechanics.

[14]  In Gwun Jang,et al.  Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization. , 2008, Journal of biomechanics.

[15]  Amir A. Zadpoor,et al.  Neural network prediction of load from the morphology of trabecular bone , 2012, 1201.6044.

[16]  Stephen Wroe,et al.  Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation , 2007, Proceedings of the National Academy of Sciences.

[17]  Stephen M. Gatesy,et al.  Caudofemoral musculature and the evolution of theropod locomotion , 1990, Paleobiology.

[18]  Ian R Grosse,et al.  Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[19]  T. Ryan,et al.  The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. , 2002, Journal of human evolution.

[20]  F.E. Zajac,et al.  An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures , 1990, IEEE Transactions on Biomedical Engineering.

[21]  K. Bachus,et al.  Loading conditions and cortical bone construction of an artiodactyl calcaneus. , 1999, The Journal of experimental biology.

[22]  R. Main,et al.  Experimental tests of planar strain theory for predicting bone cross-sectional longitudinal and shear strains , 2016, Journal of Experimental Biology.

[23]  P. Walker,et al.  Forces and moments telemetered from two distal femoral replacements during various activities. , 2001, Journal of biomechanics.

[24]  S C Cowin,et al.  The fabric dependence of the orthotropic elastic constants of cancellous bone. , 1990, Journal of biomechanics.

[25]  Peter Aerts,et al.  Toe function and dynamic pressure distribution in ostrich locomotion , 2011, Journal of Experimental Biology.

[26]  C. Lovejoy The natural history of human gait and posture. Part 2. Hip and thigh. , 2005, Gait & posture.

[27]  R. Haines The tetrapod knee joint. , 1942, Journal of anatomy.

[28]  Jonas Rubenson,et al.  Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion , 2015, PeerJ.

[29]  L. S. Matthews,et al.  Trabecular bone remodeling: an experimental model. , 1991, Journal of biomechanics.

[30]  K. Haussler,et al.  Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model , 2015, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[31]  Ilse Jonkers,et al.  Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running , 2015, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[32]  J. Hutchinson,et al.  Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed , 2005, Paleobiology.

[33]  John R. Hutchinson,et al.  Adductors, abductors, and the evolution of archosaur locomotion , 2000, Paleobiology.

[34]  John R Hutchinson,et al.  Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda) , 2002, Journal of morphology.

[35]  M. Butcher,et al.  Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna) , 2008, Journal of Experimental Biology.

[36]  S. Gatesy,et al.  Long-axis rotation: a missing degree of freedom in avian bipedal locomotion , 2014, Journal of Experimental Biology.

[37]  Keita Ito,et al.  Determination of hip-joint loading patterns of living and extinct mammals using an inverse Wolff’s law approach , 2014, Biomechanics and Modeling in Mechanobiology.

[38]  J. Bertram,et al.  Bone modeling during growth: Dynamic strain equilibrium in the chick tibiotarsus , 1986, Calcified Tissue International.

[39]  John R. Hutchinson,et al.  Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb , 2016, PloS one.

[40]  Justin W. Fernandez,et al.  Anatomically based geometric modelling of the musculo-skeletal system and other organs , 2004, Biomechanics and modeling in mechanobiology.

[41]  J. Hutchinson,et al.  Analysis of the moment arms and kinematics of ostrich (Struthio camelus) double patellar sesamoids , 2017, Journal of experimental zoology. Part A, Ecological and integrative physiology.

[42]  Richard W. Allmendinger,et al.  Spherical projections with OSXStereonet , 2013, Comput. Geosci..

[43]  Zhongmin Jin,et al.  Computational modelling of the natural hip: a review of finite element and multibody simulations , 2012, Computer methods in biomechanics and biomedical engineering.

[44]  Alan M. Wilson,et al.  Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus) , 2004, Journal of Experimental Biology.

[45]  Mircea Arcan,et al.  Trabecular bone adaptation with an orthotropic material model. , 2002, Journal of biomechanics.

[46]  J. Steeves,et al.  Ontogeny of bipedal locomotion: walking and running in the chick. , 1996, The Journal of physiology.

[47]  P. Rüegsegger,et al.  The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. , 1999, Bone.

[48]  M. Fischer,et al.  Comparative intralimb coordination in avian bipedal locomotion , 2012, Journal of Experimental Biology.

[49]  K J Fischer,et al.  Computational method for determination of bone and joint loads using bone density distributions. , 1995, Journal of biomechanics.

[50]  Jen A Bright,et al.  The Response of Cranial Biomechanical Finite Element Models to Variations in Mesh Density , 2011, Anatomical record.

[51]  Pierre Blazevic,et al.  Bird terrestrial locomotion as revealed by 3D kinematics. , 2011, Zoology.

[52]  Keita Ito,et al.  Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. , 2012, Journal of biomechanics.

[53]  Jos Vander Sloten,et al.  Trabecular structure compared to stress trajectories in the proximal femur and the calcaneus , 1988 .

[54]  T. Brown,et al.  Elastic modulus and strength of emu cortical bone. , 2001, The Iowa orthopaedic journal.

[55]  G. Beaupré,et al.  An approach for time‐dependent bone modeling and remodeling—application: A preliminary remodeling simulation , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[56]  W. Harris,et al.  Determination of loading parameters in the canine hip in vivo. , 1993, Journal of biomechanics.

[57]  Diogo M. Geraldes,et al.  A comparative study of orthotropic and isotropic bone adaptation in the femur , 2014, International journal for numerical methods in biomedical engineering.

[58]  R. Marsh,et al.  Partitioning the Energetics of Walking and Running: Swinging the Limbs Is Expensive , 2004, Science.

[59]  B. R. Umberger,et al.  A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb , 2013, Journal of Experimental Biology.

[60]  Matthew S. DeMers,et al.  Compressive tibiofemoral force during crouch gait. , 2012, Gait & posture.

[61]  Jen A. Bright,et al.  A review of paleontological finite element models and their validity , 2014 .

[62]  C. R. Taylor,et al.  Energetics of bipedal running. II. Limb design and running mechanics. , 1998, The Journal of experimental biology.

[63]  Thomas E Baer,et al.  Hip joint contact force in the emu (Dromaius novaehollandiae) during normal level walking. , 2008, Journal of biomechanics.

[64]  Keita Ito,et al.  Subject-specific bone loading estimation in the human distal radius. , 2013, Journal of biomechanics.

[65]  R E Guldberg,et al.  Trabecular bone adaptation to variations in porous-coated implant topology. , 1997, Journal of biomechanics.

[66]  John R. Hutchinson,et al.  The evolutionary continuum of limb function from early theropods to birds , 2009, Naturwissenschaften.

[67]  Timothy M Wright,et al.  Cancellous bone adaptation to in vivo loading in a rabbit model. , 2006, Bone.

[68]  G S Beaupré,et al.  Calcaneal loading during walking and running. , 2000, Medicine and science in sports and exercise.

[69]  In Gwun Jang,et al.  Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling. , 2010, Journal of biomechanics.

[70]  C. Lovejoy,et al.  The Maka femur and its bearing on the antiquity of human walking: applying contemporary concepts of morphogenesis to the human fossil record. , 2002, American journal of physical anthropology.

[71]  A. Houssaye Advances in vertebrate palaeohistology: recent progress, discoveries, and new approaches , 2014 .

[72]  D. Carter,et al.  Relationships between loading history and femoral cancellous bone architecture. , 1989, Journal of biomechanics.

[73]  Luca Modenese,et al.  Femoral bone mesoscale structural architecture prediction using musculoskeletal and finite element modelling , 2015 .

[74]  C. Mcgowan The hind limb musculature of the brown kiwi, Apteryx australis mantelli , 1979, Journal of morphology.

[75]  A. Biewener,et al.  Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion , 1999, Journal of morphology.

[76]  T. Kivell A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? , 2016, Journal of anatomy.

[77]  R. Müller,et al.  Bone morphology allows estimation of loading history in a murine model of bone adaptation , 2012, Biomechanics and modeling in mechanobiology.

[78]  S. Reilly,et al.  Locomotion in the quail (Coturnix japonica): the kinematics of walking and increasing speed , 2000, Journal of morphology.

[79]  R. Elsey,et al.  Calcified cartilage shape in archosaur long bones reflects overlying joint shape in stress‐bearing elements: Implications for nonavian dinosaur locomotion , 2010, Anatomical record.

[80]  Rik Huiskes,et al.  Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.

[81]  R. Blob,et al.  Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion , 2011, Journal of Experimental Biology.

[82]  P. Sharma Mechanics of materials. , 2010, Technology and health care : official journal of the European Society for Engineering and Medicine.

[83]  J. C. Simo,et al.  Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. , 1997, Journal of biomechanics.

[84]  B Hallgrímsson,et al.  Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation , 2006, Journal of Experimental Biology.

[85]  John C. Koch,et al.  The laws of bone architecture , 1917 .

[86]  A Rohlmann,et al.  Hip joint forces in sheep. , 1999, Journal of biomechanics.

[87]  R. Alexander,et al.  Forces exerted on the ground by galloping dogs (Canis familiaris) , 1987 .

[88]  Denham B. Heliams,et al.  Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics , 2007, Journal of Experimental Biology.

[89]  Reinhard Blickhan,et al.  Adjustments of global and local hindlimb properties during terrestrial locomotion of the common quail (Coturnix coturnix) , 2013, Journal of Experimental Biology.

[90]  Luca Modenese,et al.  Prediction of hip contact forces and muscle activations during walking at different speeds , 2012 .

[91]  J. A. Nyakatura,et al.  Trabecular architecture in the forelimb epiphyses of extant xenarthrans (Mammalia) , 2017, Frontiers in Zoology.

[92]  R. Huiskes,et al.  Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. , 1999, Bone.

[93]  P. J. Bishop,et al.  Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds , 2017, Journal of The Royal Society Interface.

[94]  Philip Clausen,et al.  High‐Resolution Three‐Dimensional Computer Simulation of Hominid Cranial Mechanics , 2007, Anatomical record.

[95]  Luca Modenese,et al.  Hip Abduction Can Prevent Posterior Edge Loading of Hip Replacements , 2013, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[96]  D. Lieberman,et al.  A Wolff in sheep's clothing: trabecular bone adaptation in response to changes in joint loading orientation. , 2011, Bone.

[97]  Marco Viceconti,et al.  Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification? , 2014, PloS one.

[98]  David A. Winter,et al.  Biomechanics and Motor Control of Human Movement , 1990 .

[99]  Bernd Eggers,et al.  Bones Structure And Mechanics , 2016 .

[100]  C H Turner,et al.  Three rules for bone adaptation to mechanical stimuli. , 1998, Bone.

[101]  Baohua Ji,et al.  Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process. , 2012, Journal of biomechanics.

[102]  Ayman Habib,et al.  OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement , 2007, IEEE Transactions on Biomedical Engineering.

[103]  G. Hudson STUDIES ON THE MUSCLES OF THE PELVIC APPENDAGE IN BIRDS , 1937 .

[104]  Gianni Campoli,et al.  Computational load estimation of the femur. , 2012, Journal of the mechanical behavior of biomedical materials.

[105]  Stephen M Gatesy,et al.  Guineafowl hind limb function. I: Cineradiographic analysis and speed effects , 1999, Journal of morphology.

[106]  D. Pahr,et al.  Trabecular Bone Structure Correlates with Hand Posture and Use in Hominoids , 2013, PloS one.

[107]  John R. Hutchinson,et al.  Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs , 2013, Nature.

[108]  Kenneth J Fischer,et al.  A contact algorithm for density-based load estimation. , 2006, Journal of biomechanics.

[109]  R. Pidaparti,et al.  A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation? , 1997, Journal of biomechanics.

[110]  Antonio Pedotti,et al.  Optimization of muscle-force sequencing in human locomotion , 1978 .

[111]  Alan M. Wilson,et al.  Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus) , 2006, Journal of anatomy.

[112]  J. Cotton,et al.  The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics , 2016, PloS one.

[113]  John R. Hutchinson,et al.  The Anatomical Foundation for Multidisciplinary Studies of Animal Limb Function: Examples from Dinosaur and Elephant Limb Imaging Studies , 2008 .

[114]  R. Nudds,et al.  Ontogeny of sex differences in the energetics and kinematics of terrestrial locomotion in leghorn chickens (Gallus gallus domesticus) , 2016, Scientific Reports.

[115]  L. Marivaux,et al.  Comparative Three‐Dimensional Structure of the Trabecular Bone in the Talus of Primates and Its Relationship to Ankle Joint Loads Generated During Locomotion , 2012, Anatomical record.

[116]  Haines Rw,et al.  The tetrapod knee joint. , 1942 .

[117]  Ronald B. Orr,et al.  Effect of prolonged walking on concrete on the knees of sheep. , 1982, Journal of biomechanics.

[118]  Lin Liao,et al.  A Study of Inertia Relief Analysis , 2011 .

[119]  B. Richmond,et al.  Comparative forefoot trabecular bone architecture in extant hominids. , 2010, Journal of human evolution.

[120]  Lei Ren,et al.  Integration of biomechanical compliance, leverage, and power in elephant limbs , 2010, Proceedings of the National Academy of Sciences.

[121]  A. Biewener,et al.  Skeletal strain patterns and growth in the emu hindlimb during ontogeny , 2007, Journal of Experimental Biology.

[122]  R. Ketcham,et al.  Angular orientation of trabecular bone in the femoral head and its relationship to hip joint loads in leaping primates , 2005, Journal of morphology.

[123]  M. Nakatsukasa,et al.  Textural characteristics of the iliac-femoral trabecular pattern in a bipedally trained Japanese macaque , 2007, Primates.

[124]  C R Jacobs,et al.  The mechanobiology of cancellous bone structural adaptation. , 2000, Journal of rehabilitation research and development.

[125]  M. Butcher,et al.  Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion , 2011, Journal of Experimental Biology.

[126]  G. Bergmann,et al.  Hip contact forces and gait patterns from routine activities. , 2001, Journal of biomechanics.

[127]  A. Patak,et al.  Pelvic limb musculature in the emu Dromaius novaehollandiae (Aves: Struthioniformes: Dromaiidae): Adaptations to high‐speed running , 1998, Journal of morphology.

[128]  Robert B. Salter,et al.  Skeletal Function and Form. Mechanobiology of Skeletal Development, Aging, and Regeneration. , 2001 .

[129]  J. Hutchinson,et al.  Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae) , 2014, PeerJ.

[130]  Timothy M. Ryan,et al.  Unique Suites of Trabecular Bone Features Characterize Locomotor Behavior in Human and Non-Human Anthropoid Primates , 2012, PloS one.

[131]  Diogo M. Geraldes,et al.  Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur , 2015, Biomechanics and Modeling in Mechanobiology.

[132]  Jonas Rubenson,et al.  Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics , 2011, Journal of The Royal Society Interface.

[133]  M. Pandy,et al.  A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. , 1999, Computer methods in biomechanics and biomedical engineering.

[134]  M. Nakatsukasa,et al.  Trabecular bone anisotropy and orientation in an Early Pleistocene hominin talus from East Turkana, Kenya. , 2013, Journal of human evolution.

[135]  Tomonori Yamada,et al.  Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law. , 2009, Journal of biomechanics.

[136]  R Müller,et al.  Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography. , 2001, American journal of physical anthropology.

[137]  R. Müller,et al.  A comparison of the femoral head and neck trabecular architecture of Galago and Perodicticus using micro-computed tomography (microCT). , 2002, Journal of human evolution.

[138]  Xudong Zhang,et al.  Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo. , 2014, Journal of biomechanical engineering.

[139]  Stephen C. Cowin,et al.  The False Premise in Wolff's Law , 2001 .

[140]  J. Iriarte-Díaz,et al.  Walking Like Dinosaurs: Chickens with Artificial Tails Provide Clues about Non-Avian Theropod Locomotion , 2014, PloS one.

[141]  S. Gatesy Neuromuscular diversity in archosaur deep dorsal thigh muscles. , 1994, Brain, behavior and evolution.

[142]  R. Huiskes,et al.  Fabric and elastic principal directions of cancellous bone are closely related. , 1997, Journal of biomechanics.

[143]  A. Biewener,et al.  Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis). , 2001, The Journal of experimental biology.

[144]  S. Renous,et al.  Bipedal locomotion in ratites (Paleognatiform): examples of cursorial birds , 2008 .

[145]  Friedrich Pauwels,et al.  Biomechanics of the Locomotor Apparatus , 1980 .

[146]  N. Sverdlova Tensile trabeculae--myth or reality? , 2011, Journal of musculoskeletal & neuronal interactions.

[147]  R. Alexander,et al.  A mechanical analysis of a hind leg of a frog (Rana temporaria) , 2010 .

[148]  David G Lloyd,et al.  Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods , 2018, PeerJ.

[149]  F. Taddei,et al.  NMSBuilder: an application to personalize NMS models , 2011 .

[150]  M G Pandy,et al.  Static and dynamic optimization solutions for gait are practically equivalent. , 2001, Journal of biomechanics.

[151]  P. Bell,et al.  A Comparison of the Jaw Mechanics in Hadrosaurid and Ceratopsid Dinosaurs Using Finite Element Analysis , 2009, Anatomical record.

[152]  Christopher Boyle,et al.  Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization. , 2011, Journal of biomechanics.

[153]  P. J. Bishop,et al.  The effects of cracks on the quantification of the cancellous bone fabric tensor in fossil and archaeological specimens: a simulation study , 2017, Journal of anatomy.

[154]  R Seliktar,et al.  Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus. , 2004, Medical engineering & physics.

[155]  Paul M. Barrett,et al.  Muscle Moment Arm Analyses Applied to Vertebrate Paleontology: A Case Study Using Stegosaurus stenops Marsh, 1887 , 2017, Journal of Vertebrate Paleontology.

[156]  John Wheeler,et al.  STRUCTURAL GEOLOGY ALGORITHMS: VECTORS AND TENSORS , 2013 .

[157]  T. Keaveny,et al.  Evolution of the biomechanical material properties of the femur , 2002, The Anatomical record.

[158]  L E Lanyon,et al.  Experimental support for the trajectorial theory of bone structure. , 1974, The Journal of bone and joint surgery. British volume.

[159]  Yaghoub Dabiri,et al.  Recent Advances in Computational Mechanics of the Human Knee Joint , 2013, Comput. Math. Methods Medicine.

[160]  John R Hutchinson,et al.  The evolution of hindlimb tendons and muscles on the line to crown-group birds. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[161]  David G Lloyd,et al.  Cancellous bone and theropod dinosaur locomotion. Part III—Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds , 2018, PeerJ.

[162]  M. Carrano,et al.  Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology , 1998, Paleobiology.

[163]  Torsten Bumgarner,et al.  Biomechanics and Motor Control of Human Movement , 2013 .

[164]  S. Medler,et al.  Comparative trends in shortening velocity and force production in skeletal muscles. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[165]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .

[166]  Terrestrial locomotion , 2018, The International Encyclopedia of Biological Anthropology.

[167]  J R Hutchinson,et al.  Gearing effects of the patella (knee extensor muscle sesamoid) of the helmeted guineafowl during terrestrial locomotion , 2017, Journal of zoology.

[168]  John R Hutchinson,et al.  Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa , 2004, Journal of morphology.

[169]  J. Polk,et al.  Knee Posture Predicted from Subchondral Apparent Density in the Distal Femur: An Experimental Validation , 2008, Anatomical record.

[170]  R D Jacobson,et al.  A behavioral and electromyographic study of walking in the chick. , 1982, Journal of neurophysiology.

[171]  G. Hudson,et al.  Muscles of the Pelvic Limb in Galliform Birds , 1959 .

[172]  Marco Attene,et al.  ReMESH: An Interactive Environment to Edit and Repair Triangle Meshes , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[173]  Stacey A. Matarazzo Trabecular Architecture of the Manual Elements Reflects Locomotor Patterns in Primates , 2015, PloS one.

[174]  C. Wink,et al.  Neural elements in the cruciate ligaments and menisci of the knee joint of the American alligator, Alligator mississippiensis , 1989, Journal of morphology.

[175]  Stephen M Gatesy,et al.  Guineafowl hind limb function. II: Electromyographic analysis and motor pattern evolution , 1999, Journal of morphology.

[176]  Anna G. Warrener,et al.  Trabecular Evidence for a Human-Like Gait in Australopithecus africanus , 2013, PloS one.

[177]  Xu Yang,et al.  The Effects of Loading on Cancellous Bone in the Rabbit , 2009, Clinical orthopaedics and related research.

[178]  H. Rodrigues,et al.  Numerical modeling of bone tissue adaptation--a hierarchical approach for bone apparent density and trabecular structure. , 2009, Journal of Biomechanics.