IR spectroscopy on jet-cooled isolated two-station rotaxanes.

High-resolution IR spectroscopy has been employed to study isolated, switchable [2]rotaxanes. IR absorption spectra of two-station rotaxanes, their separate thread, and macrocycle components, as well as those of the individual stations incorporated into the thread, have been measured in the 1800-1000 cm(-1) region. These spectra have been fully analyzed, aided by quantum chemical predictions of the IR spectra. From these analyses, a comprehensive picture emerges of the conformational structure and binding interactions between the mechanically interlocked components of the rotaxane.

[1]  D. Philp,et al.  Integrating replication processes with mechanically interlocked molecular architectures , 2008 .

[2]  P. Beer,et al.  Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. , 2009, Chemical Society reviews.

[3]  Julius Rebek,et al.  Fluorescence resonance energy transfer across a mechanical bond of a rotaxane. , 2005, Chemical communications.

[4]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[5]  B. Baytekin,et al.  Theory and experiment in concert: templated synthesis of amide rotaxanes, catenanes, and knots. , 2004, Chemistry.

[6]  F. J. Luque,et al.  Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation. , 2003, The Journal of organic chemistry.

[7]  David A Leigh,et al.  Complexation-induced translational isomerism: shuttling through stepwise competitive binding. , 2005, Angewandte Chemie.

[8]  D. Leigh,et al.  Amide-based molecular shuttles (2001-2006) , 2007 .

[9]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[10]  Dominik Horinek,et al.  Artificial molecular rotors. , 2005, Chemical reviews.

[11]  Alexandra M. Z. Slawin,et al.  Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .

[12]  S. Otto Molecular machines: tiny steps. , 2010, Nature chemistry.

[13]  Bradley D. Smith,et al.  Improving the Properties of Organic Dyes by Molecular Encapsulation , 2005 .

[14]  A. Slawin,et al.  A chemically-driven molecular information ratchet. , 2008, Journal of the American Chemical Society.

[15]  W. Buma,et al.  Infrared study of intercomponent interactions in a switchable hydrogen-bonded rotaxane. , 2008, Chemistry.

[16]  Jeffrey S. Hannam,et al.  Controlled hydrogen-bond breaking in a rotaxane by discrete solvation. , 2010, Angewandte Chemie.

[17]  W. Reckien,et al.  Frequency analysis of amide-linked rotaxane mimetics. , 2006, The journal of physical chemistry. A.

[18]  David A. Leigh,et al.  The Synthesis and Solubilization of Amide Macrocycles via Rotaxane Formation , 1996 .

[19]  Bradley D. Smith,et al.  Squaraine-derived rotaxanes: highly stable, fluorescent near-IR dyes. , 2006, Chemistry.

[20]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[21]  David A Leigh,et al.  An allosterically regulated molecular shuttle. , 2006, Angewandte Chemie.

[22]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[23]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[25]  Yi‐Hung Liu,et al.  Using acetate anions to induce translational isomerization in a neutral urea-based molecular switch. , 2007, Angewandte Chemie.

[26]  David A Leigh,et al.  Design, synthesis, and operation of small molecules that walk along tracks. , 2010, Journal of the American Chemical Society.

[27]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[28]  Bradley D. Smith,et al.  Efficient synthesis of fluorescent squaraine rotaxane dendrimers. , 2010, Organic letters.

[29]  Ning Wang,et al.  Energy transfer switching in a bistable molecular machine. , 2005, Organic letters.

[30]  S. Nepogodiev,et al.  Stiff, and sticky in the right places: the dramatic influence of preorganizing guest binding sites on the hydrogen bond-directed assembly of rotaxanes. , 2001, Journal of the American Chemical Society.

[31]  Michael M. Pollard,et al.  A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy , 2005, Science.

[32]  R. Zamboni,et al.  High-Frequency Vibrations of the Simplest Benzylic Amide [2]Catenane , 1998 .

[33]  Manfred Schliwa,et al.  Molecular motors , 2003, Nature.

[34]  W. Reckien,et al.  Uncovering individual hydrogen bonds in rotaxanes by frequency shifts. , 2010, Journal of the American Chemical Society.

[35]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[36]  Bradley D. Smith,et al.  Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes. , 2005, Journal of the American Chemical Society.

[37]  Anouk M Rijs,et al.  Conformations and vibrational spectra of a model tripeptide: change of secondary structure upon micro-solvation. , 2010, Physical chemistry chemical physics : PCCP.

[38]  David A. Leigh,et al.  “Smart” Rotaxanes: Shape Memory and Control in Tertiary Amide Peptido[2]rotaxanes , 1999 .

[39]  Francesco Zerbetto,et al.  The effect of mechanical interlocking on crystal packing: predictions and testing. , 2002, Journal of the American Chemical Society.

[40]  F. Paolucci,et al.  Nitrone [2]rotaxanes: simultaneous chemical protection and electrochemical activation of a functional group. , 2010, Journal of the American Chemical Society.

[41]  David A Leigh,et al.  "Magic rod" rotaxanes: the hydrogen bond-directed synthesis of molecular shuttles under thermodynamic control. , 2003, Organic letters.

[42]  David A Leigh,et al.  A synthetic small molecule that can walk down a track. , 2010, Nature chemistry.

[43]  David A. Leigh,et al.  Operation Mechanism of a Molecular Machine Revealed Using Time-Resolved Vibrational Spectroscopy , 2010, Science.

[44]  Andrew J. Wilson,et al.  The mechanism of formation of amide-based interlocked compounds: prediction of a new rotaxane-forming motif. , 2004, Chemistry.

[45]  A.F.G. van der Meer,et al.  The Free-Electron-Laser user facility FELIX , 1995 .

[46]  David A Leigh,et al.  Light-driven transport of a molecular walker in either direction along a molecular track. , 2011, Angewandte Chemie.

[47]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[48]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[49]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[50]  J. Oomens,et al.  Internal proton transfer leading to stable zwitterionic structures in a neutral isolated peptide. , 2010, Angewandte Chemie.

[51]  Jeffrey S. Hannam,et al.  Stiff, and sticky in the right places: binding interactions in isolated mechanically interlocked molecules probed by mid-infrared spectroscopy. , 2009, Journal of the American Chemical Society.