Automated Robotic Manipulation of Individual Colloidal Particles Using Vision-Based Control

Automated manipulation of micro- and nanosized objects using robotic setups constitutes a major challenge due to the force-scaling laws and the limited control possibilities on that scale. This paper presents a new developed approach for automated manipulation of individual colloidal particles using a dedicated dual-probe setup inside a scanning electron microscope. Based on tailored probe geometries, the setup allows for reliable pick-up and release sequences of individual particles. Applying image processing of the visual feedback provided by the microscope enables for direct and fast control of the complex manipulation routines and thus allows for fully automated alignment sequences. Experimental results reveal a high repeatability of the process with hitherto unrivaled precision. The advantages and limits of this technique are highlighted with respect to further application scenarios.

[1]  Takeshi Kasaya,et al.  Graphical template software for accurate micromanipulation in a scanning electron microscope. , 2009, The Review of scientific instruments.

[2]  Sounkalo Dembélé,et al.  Fast image drift compensation in scanning electron microscope using image registration , 2013, 2013 IEEE International Conference on Automation Science and Engineering (CASE).

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[5]  Na Liu,et al.  Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles. , 2012, Nano letters.

[6]  Sergej Fatikow,et al.  Automated robotic assembly for a micro-cartridge system inside the scanning electron microscope , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Sergej Fatikow,et al.  Vision feedback in an automatic nanohandling station inside an SEM , 2006, SPIE Optics East.

[8]  Volkmar Eichhorn,et al.  Characterization and Handling of Carbon Nanotubes , 2008 .

[9]  Bradley J. Nelson,et al.  Autonomous Injection of Biological Cells Using Visual Servoing , 2000, ISER.

[10]  Yue Qiu,et al.  Rational Assembly of Optoplasmonic Hetero‐nanoparticle Arrays with Tunable Photonic–Plasmonic Resonances , 2014, Advanced functional materials.

[11]  P. Echlin,et al.  Scanning Electron Microscopy , 2014 .

[12]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[13]  Hideki T. Miyazaki,et al.  Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope , 2000 .

[14]  Gabriel Gomila,et al.  Three-dimensional manipulation of gold nanoparticles with electro-enhanced capillary forces , 2010 .

[15]  Kortschack,et al.  Development of a mobile nanohandling robot , 2002 .

[16]  Sergej Fatikow,et al.  Approach for the 3D-Alignment in Micro- and Nano-scale Assembly Processes , 2010, IPAS.

[17]  Michaël Gauthier,et al.  Modular architecture of the microfactories for automatic micro-assembly , 2010 .

[18]  Sergej Fatikow,et al.  3-D Vision Feedback for Nanohandling Monitoring in a Scanning Electron Microscope , 2007 .

[19]  Fatih Murat Porikli,et al.  Achieving real-time object detection and tracking under extreme conditions , 2006, Journal of Real-Time Image Processing.

[20]  Aristides A. G. Requicha,et al.  Algorithms and Software for Nanomanipulation with Atomic Force Microscopes , 2009, Int. J. Robotics Res..

[21]  Tobias Tiemerding,et al.  Integrating robotic software frameworks for convenient software component exchange in micro- and nanoscale applications , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[22]  Lutz Doering,et al.  Piezoresistive cantilever as portable micro force calibration standard , 2003 .

[23]  Bin Li,et al.  Capturing and depositing one nanoobject at a time: Single particle dip-pen nanolithography , 2007 .

[24]  Ning Xi,et al.  CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics , 2006, IEEE Trans Autom. Sci. Eng..

[25]  Tobias Tiemerding,et al.  Automated mechanical characterization of 2D materials using SEM based visual servoing , 2013 .

[26]  Weiqiang Ding,et al.  Micro/Nano-particle Manipulation and Adhesion Studies , 2008 .

[27]  C D Onal,et al.  Automated 2-D Nanoparticle Manipulation Using Atomic Force Microscopy , 2011, IEEE Transactions on Nanotechnology.

[28]  Shigeki Saito,et al.  Dynamics of micro-object operation considering the adhesive effect under an SEM , 2001, Optics East.

[29]  T. Yamaura,et al.  Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscope , 2004 .

[30]  Seppo Kuikka,et al.  Towards fully automated pick and place operations of individual natural fibers , 2013, 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale.

[31]  C. López,et al.  Nanorobotic Manipulation of Microspheres for On‐Chip Diamond Architectures , 2002 .

[32]  Yong Zhang,et al.  Active Release of Microobjects Using a MEMS Microgripper to Overcome Adhesion Forces , 2009, Journal of Microelectromechanical Systems.

[33]  N. Jalili,et al.  New modeling and control framework for MEMS characterization utilizing piezoresistive microcantilever sensors , 2008, American Control Conference.

[34]  Hui Xie,et al.  Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback , 2009 .

[35]  Sergej Fatikow,et al.  Line Scan-Based High-Speed Position Tracking Inside the SEM , 2010 .

[36]  Tobias Tiemerding,et al.  A Rapid Automation Framework for Applications on the Micro- and Nanoscale , 2013 .

[37]  Wolfgang Schärtl,et al.  Current directions in core-shell nanoparticle design. , 2010, Nanoscale.

[38]  Christopher E. Wilmer,et al.  Nanoscale forces and their uses in self-assembly. , 2009, Small.

[39]  Yong Zhang,et al.  Automated Pick-Place of Silicon Nanowires , 2013, IEEE Transactions on Automation Science and Engineering.

[40]  Sergej Fatikow,et al.  Real-time object tracking for the robot-based nanohandling in a scanning electron microscope , 2006 .

[41]  Bradley J. Nelson,et al.  Real-time rigid-body visual tracking in a scanning electron microscope , 2007 .

[42]  Yasuhisa Naitoh,et al.  Nanomanipulation of Single Nanoparticle Using a Carbon Nanotube Probe in a Scanning Electron Microscope , 2009 .

[43]  E. Kumacheva,et al.  Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. , 2010, Nature nanotechnology.

[44]  Aristides A. G. Requicha,et al.  Automated Nanomanipulation with Atomic Force Microscopes , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[45]  Rong Wang,et al.  Tip Based Nanomanipulation Through Successive Directional Push , 2010 .

[46]  Zhang Yi,et al.  Modification of AFM Tips for Facilitating Picking-up of Nanoparticles , 2008 .

[47]  Hui Xie,et al.  A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly , 2009, Nanotechnology.

[48]  Philippe Lutz,et al.  Micro-factory for Submerged Assembly: Interests and Architectures , 2006 .

[49]  A. Requicha,et al.  A High-Level Nanomanipulation Control Framework , 2022 .

[50]  M. Sitti,et al.  Micro- and nano-scale robotics , 2004, Proceedings of the 2004 American Control Conference.