Analysis of Throughput for Multilayer Infrared Meanderline Waveplates References

A meanderline wave retarder is a unique type of frequency-selective-surface (FSS) that enables a change in the state of optical polarization. The principles of operation are very similar to a typical crystalline waveplate, such that the artificially structured meanderline array has both 'slow' and 'fast' axes that provide a phase offset between two orthogonal wave components. In this paper, we study the behavior and response of multilayered meanderline quarter-wave retarders designed for operation at 10.6 mum wavelength (28.28 THz). It will be shown that meanderline quarter-wave plates with more than a single layer exhibit improved transmission throughput at infrared frequencies due to impedance matching, similar to a multilayer optical film coating. Numerical data, both from simulations and measurements, are presented to validate this claim.

[1]  Ben A. Munk,et al.  Finite Antenna Arrays and FSS , 2003 .

[2]  G. Nordin,et al.  Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. , 1999, Optics express.

[3]  L. Robinson,et al.  Meander-line polarizer , 1973 .

[4]  Polarization imaging camera with a form birefringent micro-retarder array , 2003 .

[5]  K. Mahdjoubi,et al.  Susceptance computation of a meander-line polarizer layer , 1984 .

[6]  D. Kolev,et al.  Total Reflection Prisms as Achromatic IR Retarders , 1988 .

[7]  David L. Brundrett,et al.  Subwavelength transmission grating retarders for use at 10.6 μm. , 1996, Applied optics.

[8]  K. Clarke,et al.  The optical properties of YF3 films , 1987 .

[9]  Gordon W. Day,et al.  Stability of birefringent linear retarders (waveplates). , 1988, Applied optics.

[10]  Achromatic phase retarder applied to MWIR & LWIR dual-band. , 2010, Optics express.

[11]  J. Tharp,et al.  Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate , 2008 .

[12]  R. Chipman,et al.  HN22 sheet polarizer, an inexpensive infrared retarder. , 1997, Applied optics.

[13]  G. Nordin,et al.  Micropolarizer Array for Infrared Imaging Polarimetry , 1999 .

[14]  Ruey-Shi Chu,et al.  Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence , 1987 .

[15]  J. Tharp,et al.  Design and Demonstration of an Infrared Meanderline Phase Retarder , 2007, IEEE Transactions on Antennas and Propagation.

[16]  Patrick Gallais,et al.  Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: application to infrared antireflection coating on germanium , 1994, Other Conferences.

[17]  V. Arora Quantum size effect in thin-wire transport , 1981 .

[18]  J. Tharp,et al.  Demonstration of a single-layer meanderline phase retarder at infrared. , 2006, Optics letters.

[19]  T. W. Ang,et al.  Accurate Analysis of Meanderline Polarizers With Finite Thicknesses Using Mode Matching , 2008, IEEE Transactions on Antennas and Propagation.

[20]  F. Nichitiu,et al.  Infrared thin-film totally reflecting quarter-wave retarders. , 1991, Applied optics.

[21]  J. Tharp,et al.  Off-axis behavior of an infrared meander-line waveplate. , 2007, Optics letters.

[22]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[23]  R C Sharp,et al.  Electrically tunable liquid-crystal wave plate in the infrared. , 1990, Optics letters.

[24]  R. Marhefka,et al.  Ohmic loss in frequency-selective surfaces , 2003 .

[25]  James C. Ginn,et al.  Spectroscopic ellipsometry of materials for infrared micro‐device fabrication , 2008 .

[26]  Cornell S. L. Chun Microscale waveplates for polarimetric infrared imaging , 2003, SPIE Defense + Commercial Sensing.

[27]  G. A. Vawter,et al.  Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features , 2006 .

[28]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[29]  V. P. Yakunin,et al.  Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings , 1994 .

[30]  H. N. Mills The optical properties of container glass , 1982 .

[31]  R. Azzam,et al.  Infrared quarter-wave reflection retarders designed with high-spatial-frequency dielectric surface-relief gratings on a gold substrate at oblique incidence. , 1996, Applied optics.

[32]  P. Garrou Polymer dielectrics for multichip module packaging , 1992 .

[33]  R. Azzam,et al.  Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Masanobu Iwanaga,et al.  Ultracompact waveplates: Approach from metamaterials , 2008 .

[35]  Peter A. Rizzi,et al.  Microwave Engineering: Passive Circuits , 2008 .

[36]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[37]  Zdenek. Knittl,et al.  Optics of thin films; an optical multilayer theory , 1976 .

[38]  G. A. Vawter,et al.  Micropolarizing device for long wavelength infrared polarization imaging. , 2006 .

[39]  G. Nordin,et al.  Stacked subwavelength gratings as circular polarization filters. , 2001, Applied optics.

[40]  H. Morrow,et al.  Errata: Simple Quartz Birefringent Quarter-Wave Plate for Use at 3.39 μm , 1969 .

[41]  H. Kikuta,et al.  Achromatic quarter-wave plates using the dispersion of form birefringence. , 1997, Applied optics.

[42]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[43]  Michael W. Kudenov,et al.  2-Cam LWIR imaging Stokes polarimeter , 2008, SPIE Defense + Commercial Sensing.

[44]  Michael W. Kudenov,et al.  Microbolometer-infrared imaging Stokes polarimeter , 2009 .