Evolutionary intelligence in asphalt pavement modeling and quality-of-information

The analysis and development of a novel approach to asphalt pavement modeling, able to attend the need to predict the failure according to technical and non-technical criteria in a highway, is a hard task, namely in terms of the huge amount of possible scenarios. Indeed, the current state-of-the-art for service-life prediction is at empiric and empiric–mechanistic levels, and does not provide any suitable answer even for a single failure criteria. Consequently, it is imperative to achieve qualified models and qualitative reasoning methods, in particular due to the need to have first-class environments at our disposal where defective information is at hand. To fulfill this goal, this paper presents a dynamic and formal model oriented to fulfill the task of making predictions for multi-failure criteria, in particular in scenarios with incomplete information; it is an intelligence tool that advances according to the quality-of-information of the extensions of the predicates that model the universe of discourse. On the other hand, it is also considered the degree-of-confidence factor, a parameter that measures one‘s confidence on the list of characteristics presented by an asphalt pavement, set in terms of the attributes or variables that make the argument of the predicates referred to above.

[1]  C. Bishop The MIT Encyclopedia of the Cognitive Sciences , 1999 .

[2]  V. S. Subrahmanian,et al.  Efficient query evaluation on probabilistic databases , 2007, VLDB J..

[3]  Peter J. F. Lucas,et al.  Checking the quality of clinical guidelines using automated reasoning tools , 2008, Theory and Practice of Logic Programming.

[4]  F. K. J. Sheridan,et al.  A survey of techniques for inference under uncertainty , 1991, Artificial Intelligence Review.

[5]  Nicolas Spyratos,et al.  Hypothesis-based semantics of logic programs in multivalued logics , 2004, TOCL.

[6]  A. John Mallinckrodt,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, at - Automatisierungstechnik.

[7]  Robert A. Kowalski,et al.  The Logical Way to Be Artificially Intelligent , 2005, CLIMA.

[8]  Maryam Miradi,et al.  Knowledge Discovery and Pavement Performance: Intelligent Data Mining , 2009 .

[9]  José Carlos Ferreira Maia Neves,et al.  A logic interpreter to handle time and negation in logic data bases , 1984, ACM '84.

[10]  J. Ribeiro Evolutivo de inteligencia em la optimización de funciones , 2011 .

[11]  F. Trifirò – M. G. Xibilia,et al.  ARTIFICIAL NEURAL NETWORKS FOR PREDICTING ROAD PAVEMENT CONDITIONS , 2007 .

[12]  José Neves,et al.  Decision Making and Quality-of-Information , 2010, SOCO.

[13]  N Bandara,et al.  CURRENT AND FUTURE PAVEMENT MAINTENANCE PRIORITIZATION BASED ON RAPID VISUAL CONDITION EVALUATION , 2001 .

[14]  Samer Madanat,et al.  Effect of Performance Model Accuracy on Optimal Pavement Design , 2002 .

[15]  Robert A. Wilson,et al.  Book Reviews: The MIT Encyclopedia of the Cognitive Sciences , 2000, CL.

[16]  Paulo Novais,et al.  A Process Model for Group Decision Making with Quality Evaluation , 2009, IWANN.

[17]  Malcolm J. Beynon,et al.  The Dempster-Shafer Theory , 2009, Encyclopedia of Artificial Intelligence.

[18]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[19]  K Close,et al.  AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS COMPUTER SYSTEMS INDEX , 1976 .

[20]  Erol Tutumluer,et al.  Nondestructive Pavement Evaluation Using ILLI-PAVE Based Artificial Neural Network Models , 2006 .

[21]  Gerardo W Flintsch,et al.  Soft computing applications in transportation infrastructure asset management , 2002 .

[22]  Benjamin Kuipers,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, Autom..

[23]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[24]  José Neves,et al.  Agents, trust and contracts , 2010 .

[25]  Rui Zhao,et al.  Stress-Strain Modeling of Sands Using Artificial Neural Networks , 1995 .

[26]  Antonis C. Kakas,et al.  The role of abduction in logic programming , 1998 .

[27]  Abdulkadir Çevik,et al.  Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks , 2010, Expert Syst. Appl..

[28]  P E Irick,et al.  The Pavement Serviceability-Performance Concept , 1960 .

[29]  Final Document,et al.  Guide for Mechanistic-Empirical Design OF NEW AND REHABILITATED PAVEMENT STRUCTURES FINAL DOCUMENT APPENDIX QQ : STRUCTURAL RESPONSE MODELS FOR RIGID PAVEMENTS NCHRP , 2004 .

[30]  K A Zimmerman,et al.  TAKING PAVEMENT MANAGEMENT INTO THE NEXT MILLENNIUM , 2000 .

[31]  T. Taskiran,et al.  Prediction of California bearing ratio (CBR) of fine grained soils by AI methods , 2010, Adv. Eng. Softw..

[32]  M. Cruz-cunha,et al.  Information Communication Technology Law, Protection and Access Rights: Global Approaches and Issues , 2010 .

[33]  António Abelha,et al.  Handling incomplete information in an evolutionary environment , 2010, IEEE Congress on Evolutionary Computation.

[34]  Yan Liu,et al.  Fuzzy optimization BP neural network model for pavement performance assessment , 2007, 2007 IEEE International Conference on Grey Systems and Intelligent Services.

[35]  Luís Moniz Pereira,et al.  Prospective logic agents , 2007, Int. J. Reason. based Intell. Syst..

[36]  Dayakar Penumadu,et al.  Triaxial compression behavior of sand and gravel using artificial neural networks (ANN) , 1999 .

[37]  Yudong Cal,et al.  Soil classification by neural network , 1995 .

[38]  D T Thube,et al.  Application of Artificial Neural Network (ANN) for prediction of pavement deterioration for low volume roads in India , 2006 .

[39]  S Arumugam,et al.  RATE DEPENDENT BEHAVIOR OF CLAYS USING NEURAL NETWORKS , 1994 .

[40]  Nii O. Attoh-Okine,et al.  A Comparative Analysis of Two Artificial Neural Networks Using Pavement Performance Prediction , 1998 .

[41]  Imad Abdallah,et al.  ARTIFICIAL NEURAL NETWORK-BASED METHODOLOGIES FOR RATIONAL ASSESSMENT OF REMAINING LIFE OF EXISTING PAVEMENTS. DEVELOPMENT OF A COMPREHENSIVE, RATIONAL METHOD FOR DETERMINATION OF REMAINING LIFE OF AN EXISTING PAVEMENT , 1999 .

[42]  S. Clarke,et al.  Encyclopedia of communities of practice in information and knowledge management , 2005 .

[43]  Germano Resconi,et al.  Agent-based uncertainty logic network , 2010, International Conference on Fuzzy Systems.

[44]  José Neves,et al.  Quality of service in healthcare units , 2010, Int. J. Comput. Aided Eng. Technol..

[45]  José Neves,et al.  Quality of the information: the application in the winification process in wine production , 2009, CI 2009.

[46]  Ghassan R. Chehab,et al.  New England Verification of National Cooperative Highway Research Program (NCHRP) 1-37A Mechanistic-Empirical Pavement Design Guide , 2012 .

[47]  Charles E Dougan,et al.  Models Relating Pavement Quality Measures , 2004 .

[48]  José Neves,et al.  INTELLIPave - Considering Aside Failure Criteria And Unknown Variables In Evolutionary Intelligence Based Models For Asphalt Pavement , 2009, ECMS.

[49]  Kenneth D. Forbus Qualitative Reasoning , 1997, The Computer Science and Engineering Handbook.

[50]  H. Anh,et al.  Evolution Prospection , 2008 .

[51]  G. Bosurgi,et al.  A model based on artificial neural networks and genetic algorithms for pavement maintenance management , 2005 .

[52]  Pawan Lingras,et al.  CLASSIFYING HIGHWAYS: HIERARCHICAL GROUPING VERSUS KOHONEN NEURAL NETWORKS , 1995 .

[53]  José Neves,et al.  The Halt Condition in Genetic Programming , 2007, EPIA Workshops.

[54]  Paulo Novais,et al.  Quality of Information in the Context of Ambient Assisted Living , 2008, DCAI.

[55]  Jidong Yang,et al.  Forecasting Overall Pavement Condition with Neural Networks: Application on Florida Highway Network , 2003 .

[56]  Serdal Terzi,et al.  Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks , 2007 .

[57]  Jennifer Widom,et al.  Database Systems: The Complete Book , 2001 .

[58]  Kasthurirangan Gopalakrishnan,et al.  Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks , 2007 .

[59]  Peter J. F. Lucas,et al.  Quality Checking of Medical Guidelines through Logical Abduction , 2003, SGAI Conf..

[60]  Paola Bandini,et al.  Prediction of Pavement Performance through Neuro‐Fuzzy Reasoning , 2010, Comput. Aided Civ. Infrastructure Eng..

[61]  José Neves,et al.  The Road Map To Apply Evolutionary Intelligence To Asphalt Pavement Modelling , 2008 .

[62]  José Neves,et al.  Formal Models in Web Based Contracting , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops.

[63]  Mustafa Birkan Bayrak,et al.  USE OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTING RIGID PAVEMENT ROUGHNESS , 2004 .

[64]  A. Campbell,et al.  Progress in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[65]  Xue Li,et al.  A Neural Network based Technique for Automatic Classification of Road Cracks , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[66]  Lotfi A. Zadeh,et al.  Fuzzy Logic , 2009, Encyclopedia of Complexity and Systems Science.

[67]  A. Faghri,et al.  Roadway seasonal classification using neural networks , 1995 .

[68]  Anthony G. Cohn,et al.  Qualitative Reasoning , 1987, Advanced Topics in Artificial Intelligence.

[69]  Don R. Alexander,et al.  Using Artificial Neural Networks as a Forward Approach to Backcalculation , 1997 .

[70]  Edward T. Harrigan,et al.  NAtioNAl CooperAtive HigHwAy reseArCH progrAm , 2013 .

[71]  Xinping Yan,et al.  Pavement Distress Image Automatic Classification Based on DENSITY-Based Neural Network , 2006, RSKT.

[72]  Gabriel Pontes,et al.  Intelligent agents and medical moral dilemmas , 2009 .

[73]  Erol Tutumluer,et al.  Neural Network Modeling of Anisotropic Aggregate Behavior from Repeated Load Triaxial Tests , 1998 .

[74]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[75]  P. Novais,et al.  Quality of Knowledge in Virtual Entities , 2008 .

[76]  Luís Moniz Pereira,et al.  Evolution prospection in decision making , 2009, Intell. Decis. Technol..

[77]  Reus Bortolotto Salini,et al.  Utilização de borracha reciclada de pneus em misturas asfálticas , 2000 .

[78]  Stuart C. Shapiro,et al.  Encyclopedia of artificial intelligence, vols. 1 and 2 (2nd ed.) , 1992 .

[79]  Nicolas Spyratos,et al.  Parametrized semantics of logic programs--a unifying framework , 2003, Theor. Comput. Sci..