Technical communique: On the existence of periodic solutions in time-invariant fractional order systems

[1]  S. B. Yuste,et al.  Application of Fractional Calculus to Reaction-Subdiffusion Processes and Morphogen Gradient Formation , 2010, 1006.2661.

[2]  Mohammad Saleh Tavazoei,et al.  Analysis of a fractional order Van der Pol-like oscillator via describing function method , 2010 .

[3]  Mohammad Saleh Tavazoei,et al.  A proof for non existence of periodic solutions in time invariant fractional order systems , 2009, Autom..

[4]  Kitti Paithoonwattanakij,et al.  Chaos in Fractional Order Logistic Model , 2009, 2009 International Conference on Signal Processing Systems.

[5]  Qiang Tian,et al.  Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods , 2009 .

[6]  J. A. Tenreiro Machado,et al.  Analysis of the Van der Pol Oscillator Containing Derivatives of Fractional Order , 2007 .

[7]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[8]  Jesus M. Gonzalez-miranda,et al.  Synchronization And Control Of Chaos: An Introduction For Scientists And Engineers , 2004 .

[9]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[10]  Carl F. Lorenzo,et al.  Initialized Fractional Calculus , 2000 .

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[13]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[14]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[15]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .