Unlocking Long-Lasting Green Luminescence in Manganese-Doped Magnesium Gallate

[1]  Jiaren Du,et al.  Multimode‐Responsive Luminescence Smart Platform by Single‐Sm3+‐Doped Phosphors , 2023, Advanced Optical Materials.

[2]  Yihua Hu,et al.  Near-Infrared Long Afterglow in Fe3+-Activated Mg2SnO4 for Self-Sustainable Night Vision. , 2023, ACS applied materials & interfaces.

[3]  Liangliang Liang,et al.  Controlling persistent luminescence in nanocrystalline phosphors , 2023, Nature Materials.

[4]  Cunjian Lin,et al.  Recyclable Time–Temperature Indicator Enabled by Light Storage in Particles , 2023, Advanced Optical Materials.

[5]  B. Choi,et al.  Suppressed Self‐Reduction of Manganese in Mg2SnO4 via Li+ Incorporation with Polychromatic Luminescence for Versatile Applications , 2023, Laser & Photonics Reviews.

[6]  Guanghua Liu,et al.  Polychromatic long persistent luminescence of CaAlSiN3:Ln (Ln=Eu, Ce, Dy, Pr, Tb, Gd, Sm, Tm, Nd) phosphors prepared by combustion synthesis , 2023, Journal of Alloys and Compounds.

[7]  S. Gai,et al.  Recent Progress in Inorganic Afterglow Materials: Mechanisms, Persistent Luminescent Properties, Modulating Methods, and Bioimaging Applications , 2023, Advanced Optical Materials.

[8]  Z. Xia,et al.  Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors , 2022, Nature communications.

[9]  H. Hagemann,et al.  Persistent Luminescence in Strontium Aluminate: A Roadmap to a Brighter Future , 2022, Advanced Functional Materials.

[10]  Gongxun Bai,et al.  Multifunctional optical sensing applications of luminescent ions doped perovskite structured LaGaO3 phosphors in near-infrared spectroscopy , 2022, Materials Today Physics.

[11]  Yuanbing Mao,et al.  Emerging Ultraviolet Persistent Luminescent Materials , 2022, Advanced Optical Materials.

[12]  Sining Yun,et al.  Achieving opto-responsive multimode luminescence in Zn1+Ga2−2Ge O4:Mn persistent phosphors for advanced anti-counterfeiting and information encryption , 2022, Materials Today Physics.

[13]  Chuanlong Wang,et al.  Tunable Ultraviolet-B Full-Spectrum Delayed Luminescence of Bismuth-Activated Phosphors for High-Secure Data Encryption and Decryption , 2022, SSRN Electronic Journal.

[14]  D. Poelman,et al.  Modulating trap distribution of persistent phosphors upon simple microwave-assisted solid-state reactions , 2021, Chemical Engineering Journal.

[15]  Xudong Sun,et al.  Regulating anti-site defects in MgGa2O4:Mn4+ through Mg2+/Ge4+ doping to greatly enhance broadband red emission for plant cultivation , 2021, Journal of Materials Research and Technology.

[16]  R. Xie,et al.  X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage , 2021, Light, science & applications.

[17]  D. Zhao,et al.  X-ray-activated persistent luminescence nanomaterials for NIR-II imaging , 2021, Nature Nanotechnology.

[18]  D. Poelman,et al.  Energy Efficient Microwave-Assisted Preparation of Deep Red/Near-Infrared Emitting Lithium Aluminate and Gallate Phosphors , 2021 .

[19]  Qiushui Chen,et al.  High-resolution X-ray luminescence extension imaging , 2021, Nature.

[20]  Ka‐Leung Wong,et al.  Low-dose X-ray-stimulated LaGaO3:Sb,Cr near-infrared persistent luminescence nanoparticles for deep-tissue and renewable in vivo bioimaging , 2021 .

[21]  Yihua Hu,et al.  Optically Stimulated Luminescence Phosphors: Principles, Applications, and Prospects , 2020, Laser & Photonics Reviews.

[22]  D. Poelman,et al.  Temperature Dependency of Trap‐Controlled Persistent Luminescence , 2020, Laser & Photonics Reviews.

[23]  Z. Pan,et al.  Solar-blind ultraviolet-C persistent luminescence phosphors , 2020, Nature Communications.

[24]  P. Smet,et al.  Microwave-assisted synthesis followed by a reduction step: making persistent phosphors with a large storage capacity. , 2020, Dalton transactions.

[25]  D. Poelman,et al.  Identifying Near‐Infrared Persistent Luminescence in Cr3+‐Doped Magnesium Gallogermanates Featuring Afterglow Emission at Extremely Low Temperature , 2020, Advanced Optical Materials.

[26]  Yongchao Jia,et al.  Enhancing luminescence and controlling Mn valence state of Gd3Ga5-x-δAlx-y+δO12:yMn Phosphors by the Design of Garnet Structure. , 2020, ACS applied materials & interfaces.

[27]  D. Poelman,et al.  Facile Synthesis of Mn4+-Activated Double Perovskite Germanate Phosphors with Near-Infrared Persistent Luminescence , 2019, Nanomaterials.

[28]  P. Dorenbos,et al.  Designing thermally stimulated 1.06 µm Nd3+ emission for the second bio-imaging window demonstrated by energy transfer from Bi3+ in La-, Gd-, Y-, and LuPO4 , 2019, Chemical Engineering Journal.

[29]  Ping Huang,et al.  Full-Spectrum Persistent Luminescence Tuning Using All-Inorganic Perovskite Quantum Dots. , 2019, Angewandte Chemie.

[30]  Zhuo Chen,et al.  Broadband NIR photostimulated luminescence nanoprobes based on CaS:Eu2+,Sm3+ nanocrystals , 2019, Chemical science.

[31]  Z. Xia,et al.  Structural Confinement toward Giant Enhancement of Red Emission in Mn2+‐Based Phosphors , 2018, Advanced Functional Materials.

[32]  M. Lastusaari,et al.  Persistent luminescence warm-light LEDs based on Ti-doped RE2O2S materials prepared by rapid and energy-saving microwave-assisted synthesis , 2018 .

[33]  M. Lastusaari,et al.  Fast, low-cost preparation of hackmanite minerals with reversible photochromic behavior using a microwave-assisted structure-conversion method. , 2018, Chemical communications.

[34]  R. Xie,et al.  Optical Data Storage and Multicolor Emission Readout on Flexible Films Using Deep‐Trap Persistent Luminescence Materials , 2018 .

[35]  Y. Shan,et al.  Crystal-site engineering approach for preparation of Mg B2O4:Mn2+, Mn4+ (B = Al, Ga) phosphors: Control of green/red luminescence properties , 2017 .

[36]  Xiaowang Liu,et al.  Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. , 2017, Chemical reviews.

[37]  Z. Xia,et al.  Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications. , 2017, Chemical Society reviews.

[38]  Didier Gourier,et al.  The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. , 2014, Nature materials.

[39]  Wen-jun Wang,et al.  Green and red photoluminescence from ZnAl2O4:Mn phosphors prepared by sol–gel method , 2012 .

[40]  Sungho Choi,et al.  Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis , 2010 .

[41]  P. Smet,et al.  Persistent Luminescence in Eu2+-Doped Compounds: A Review , 2010, Materials.

[42]  L. P. Sosman,et al.  Preparation, structure analysis and photoluminescence properties of MgGa2O4:Mn2+ , 2009 .

[43]  T. Isobe,et al.  Glycothermal Synthesis and Photoluminescence of MgGa2O4 : Mn2 + Nanophosphors: Comparison to ZnGa2O4 : Mn2 + Nanophosphors , 2009 .

[44]  E. Hanamura,et al.  Luminescence channels of manganese-doped spinel , 2004 .

[45]  Chao‐Nan Xu,et al.  Strong Mechanoluminescence from UV-Irradiated Spinels of ZnGa2O4:Mn and MgGa2O4:Mn , 2000 .

[46]  R. Tomala,et al.  Electronic structure engineering of Gd2.97Tb0.03Ga5-xAlxO12 persistent luminescence phosphors , 2022 .

[47]  Zhanhua Wei,et al.  High charge carrier storage capacity and wide range X-ray to infrared photon sensing in LiLuGeO4:Bi3+,Ln3+ (Ln=Pr, Tb, or Dy) for anti-counterfeiting and information storage applications , 2022, Materials Chemistry Frontiers.

[48]  Xilin Ma,et al.  Design of efficient color-tunable long persistent luminescence phosphor BaGa2O4:Pr3+ and its performance enhancement via a trap-induced strategy , 2022, Journal of Materials Chemistry C.

[49]  Huifang Shi,et al.  Ultraviolet afterglow , 2019, Nature Photonics.

[50]  Zhengwei Pan,et al.  Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates. , 2011, Nature materials.