The ‘division of labour’ model of eye evolution

The ‘division of labour’ model of eye evolution is elaborated here. We propose that the evolution of complex, multicellular animal eyes started from a single, multi-functional cell type that existed in metazoan ancestors. This ancient cell type had at least three functions: light detection via a photoreceptive organelle, light shading by means of pigment granules and steering through locomotor cilia. Located around the circumference of swimming ciliated zooplankton larvae, these ancient cells were able to mediate phototaxis in the absence of a nervous system. This precursor then diversified, by cell-type functional segregation, into sister cell types that specialized in different subfunctions, evolving into separate photoreceptor cells, shading pigment cells (SPCs) or ciliated locomotor cells. Photoreceptor sensory cells and ciliated locomotor cells remained interconnected by newly evolving axons, giving rise to an early axonal circuit. In some evolutionary lines, residual functions prevailed in the specialized cell types that mirror the ancient multi-functionality, for instance, SPCs expressing an opsin as well as possessing rhabdomer-like microvilli, vestigial cilia and an axon. Functional segregation of cell types in eye evolution also explains the emergence of more elaborate photosensory–motor axonal circuits, with interneurons relaying the visual information.

[1]  R. Graczyk The eye. , 1955, Radiography.

[2]  M. Blumer The ciliary photoreceptor in the teleplanic veliger larvae of Smaragdia sp. and Strombus sp. (Mollusca, Gastropoda) , 1995, Zoomorphology.

[3]  M. Maldonado,et al.  The cellular basis of photobehavior in the tufted parenchymella larva of demosponges , 2003 .

[4]  G. Jékely Evolution of phototaxis , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  G. Purschke Sense organs in polychaetes (Annelida) , 2005, Hydrobiologia.

[6]  Todd H. Oakley,et al.  The Origins of Novel Protein Interactions during Animal Opsin Evolution , 2007, PloS one.

[7]  G. Purschke,et al.  Pigmented eyes, photoreceptor‐like sense organs and central nervous system in the polychaete Scoloplos armiger (Orbiniidae, Annelida) and their phylogenetic importance , 2009, Journal of morphology.

[8]  H. Hausen,et al.  Photoreceptor cells and eyes in Annelida. , 2006, Arthropod structure & development.

[9]  B. Rhode Development and differentiation of the eye in Platynereis dumerilii (Annelida, Polychaeta) , 1992, Journal of morphology.

[10]  F. Chia,et al.  Development and metamorphosis of the planktotrophic larvae of Rostanga pulchra (Mollusca: Nudibranchia) , 1978 .

[11]  F. Golla The Central Nervous System , 1960, Nature.

[12]  M. Blumer Alterations of the eyes of Carinaria lamarcki (Gastropoda, Heteropoda) during the long pelagic cycle , 1998, Zoomorphology.

[13]  W. Gehring,et al.  Evolution and Functional Diversity of Jellyfish Opsins , 2008, Current Biology.

[14]  R. M. Eakin,et al.  Fine structure of eyespots in tornarian larvae (Phylum: Hemichordata) , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[15]  Kosuke Takano,et al.  Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade , 2008, Proceedings of the National Academy of Sciences.

[16]  Daniel W. McShea,et al.  Functional Complexity in Organisms: Parts as Proxies , 2000 .

[17]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[18]  Todd H. Oakley,et al.  Genomics and the evolutionary origins of nervous system complexity. , 2008, Current opinion in genetics & development.

[19]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[20]  D. Marshall,et al.  STRUCTURE OF THE CEPHALIC TENTACLES OF SOME SPECIES OF PROSOBRANCH LIMPET (PATELLIDAE AND FISSURELLIDAE) , 1990 .

[21]  C. Cutress,et al.  Life History of Carybdea Alata Reynaud, 1830 (Cubomedusae) , 1976 .

[22]  M. Sanders Handbook of Sensory Physiology , 1975 .

[23]  T. Lamb,et al.  Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup , 2007, Nature Reviews Neuroscience.

[24]  V. Meyer-Rochow,et al.  The eye of the freshwater prosobranch gastropod Viviparus viviparus: ultrastructure, electrophysiology and behaviour , 2006 .

[25]  S. Carroll Chance and necessity: the evolution of morphological complexity and diversity , 2001, Nature.

[26]  G. Purschke,et al.  Central nervous system and sense organs, with special reference to photoreceptor‐like sensory elements, in Polygordius appendiculatus (Annelida), an interstitial polychaete with uncertain phylogenetic affinities , 2009 .

[27]  Detlev Arendt,et al.  Eye Evolution: The Blurry Beginning , 2008, Current Biology.

[28]  K. Foster Eye Evolution: Two Eyes Can Be Better Than One , 2009, Current Biology.

[29]  T. Sensenbaugh Fine Structural Observations of the Apical Organ in the Larva of Polygordius (Annelida: Polychaeta) , 2021 .

[30]  David J. Miller,et al.  Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. , 2005, Trends in genetics : TIG.

[31]  G. Purschke Ultrastructural investigations of presumed photoreceptive organs in two Saccocirrus species (polychaeta, saccocirridae) , 1992, Journal of morphology.

[32]  M. Blumer Development of a unique eye: photoreceptors of the pelagic predator Atlanta peroni (Gastropoda, Heteropoda) , 1999, Zoomorphology.

[33]  Karin Nordström,et al.  A simple visual system without neurons in jellyfish larvae , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  Yuh Nung Jan,et al.  atonal is the proneural gene for Drosophila photoreceptors , 1994, Nature.

[35]  Akira Tonosaki,et al.  FINE STRUCTURE OF THE OCTOPUS RETINA , 1965, The Journal of cell biology.

[36]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[37]  V. Schmid,et al.  Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. , 2004, Developmental biology.

[38]  D. Arendt The evolution of cell types in animals: emerging principles from molecular studies , 2008, Nature Reviews Genetics.

[39]  B. Hall,et al.  Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest , 2006, Biological reviews of the Cambridge Philosophical Society.

[40]  R. M. Eakin,et al.  Fine structure of ocelli in larvae of an archiannelid, Polygordius cf. appendiculatus , 1981, Zoomorphology.

[41]  Jacques Monod,et al.  Chance and Necessity , 1970 .

[42]  M. Blumer Alterations of the eyes during ontogenesis inAporrhais pespelecani (Mollusca, Caenogastropoda) , 1996, Zoomorphology.

[43]  D. Arendt Evolution of eyes and photoreceptor cell types. , 2003, The International journal of developmental biology.

[44]  D. Arendt,et al.  Reconstructing the eyes of Urbilateria. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  M. Blumer The ultrastructure of the eyes in the veliger-larvae of Aporrhais sp. and Bittium reticulatum (Mollusca, Caenogastropoda) , 1994, Zoomorphology.

[46]  G. Fuller,et al.  Central Nervous System , 2007 .

[47]  B. Degnan,et al.  Cytological Basis of Photoresponsive Behavior in a Sponge Larva , 2001, The Biological Bulletin.

[48]  G. Purschke,et al.  Ultrastructure of pigmented adult eyes in errant polychaetes (Annelida): implications for annelid evolution , 2009, Zoomorphology.

[49]  G. Purschke,et al.  Evolution of body wall musculature. , 2006, Integrative and comparative biology.

[50]  J. R. Marsden,et al.  Ultrastructure of the eyespot in three polychaete trochophore larvae (Annelida) , 1987, Zoomorphology.

[51]  Anna V. Filippova,et al.  Muscular system in polychaetes (Annelida) , 2005, Hydrobiologia.

[52]  K Ikeo,et al.  Pax 6: mastering eye morphogenesis and eye evolution. , 1999, Trends in genetics : TIG.

[53]  V. Hartenstein,et al.  Conserved Role of the Vsx Genes Supports a Monophyletic Origin for Bilaterian Visual Systems , 2008, Current Biology.

[54]  K. Holmberg The Cyclostome Retina , 1977 .