A multi-level consensus function clustering ensemble

[1]  Abdolreza Mirzaei,et al.  A Novel Hierarchical-Clustering-Combination Scheme Based on Fuzzy-Similarity Relations , 2010, IEEE Transactions on Fuzzy Systems.

[2]  Wai Lok Woo,et al.  Region-of-interest extraction in low depth of field images using ensemble clustering and difference of Gaussian approaches , 2013, Pattern Recognit..

[3]  Chang-Dong Wang,et al.  Ensemble clustering using factor graph , 2016, Pattern Recognit..

[4]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jane You,et al.  From cluster ensemble to structure ensemble , 2012, Inf. Sci..

[6]  Hamid Parvin,et al.  A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm , 2013, Pattern Analysis and Applications.

[7]  Hamid Parvin,et al.  To improve the quality of cluster ensembles by selecting a subset of base clusters , 2014, J. Exp. Theor. Artif. Intell..

[8]  Hamid Parvin,et al.  Dynamic protein–protein interaction networks construction using firefly algorithm , 2017, Pattern Analysis and Applications.

[9]  William F. Punch,et al.  Effects of resampling method and adaptation on clustering ensemble efficacy , 2011, Artificial Intelligence Review.

[10]  Xiaoyi Jiang,et al.  Ensemble clustering by means of clustering embedding in vector spaces , 2014, Pattern Recognit..

[11]  Hamid Parvin,et al.  An artificial intelligence-based clinical decision support system for large kidney stone treatment , 2019, Australasian Physical & Engineering Sciences in Medicine.

[12]  Hamid Parvin,et al.  Diverse classifier ensemble creation based on heuristic dataset modification , 2018 .

[13]  Hamid Parvin,et al.  Imputing missing value through ensemble concept based on statistical measures , 2018, Knowledge and Information Systems.

[14]  Hamid Parvin,et al.  Diversity based cluster weighting in cluster ensemble: an information theory approach , 2019, Artificial Intelligence Review.

[15]  Hamid Parvin,et al.  Clustering ensemble selection considering quality and diversity , 2015, Artificial Intelligence Review.

[16]  Vahid Rafe,et al.  An approach based on knowledge exploration for state space management in checking reachability of complex software systems , 2020, Soft Comput..

[17]  Tossapon Boongoen,et al.  A Link-Based Cluster Ensemble Approach for Categorical Data Clustering , 2012, IEEE Transactions on Knowledge and Data Engineering.

[18]  Chang-Dong Wang,et al.  Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis , 2014, Neurocomputing.

[19]  Hamid Parvin,et al.  Optimizing Fuzzy Cluster Ensemble in String Representation , 2013, Int. J. Pattern Recognit. Artif. Intell..

[20]  Chang-Dong Wang,et al.  Locally Weighted Ensemble Clustering , 2016, IEEE Transactions on Cybernetics.

[21]  Blaise Hanczar,et al.  Ensemble methods for biclustering tasks , 2012, Pattern Recognit..

[22]  Selim Mimaroglu,et al.  DICLENS: Divisive Clustering Ensemble with Automatic Cluster Number , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  Tossapon Boongoen,et al.  LCE: a link-based cluster ensemble method for improved gene expression data analysis , 2010, Bioinform..

[24]  Hamid Parvin,et al.  An innovative linear unsupervised space adjustment by keeping low-level spatial data structure , 2018, Knowledge and Information Systems.

[25]  Hamid Parvin,et al.  A fuzzy clustering ensemble based on cluster clustering and iterative Fusion of base clusters , 2019, Applied intelligence (Boston).

[26]  Xuan Vinh Nguyen,et al.  A Set Correlation Model for Partitional Clustering , 2010, PAKDD.

[27]  Jane You,et al.  Hybrid Fuzzy Cluster Ensemble Framework for Tumor Clustering from Biomolecular Data , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  Kurt Hornik,et al.  A Combination Scheme for Fuzzy Clustering , 2002, AFSS.

[29]  Mohamed S. Kamel,et al.  Cumulative Voting Consensus Method for Partitions with Variable Number of Clusters , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Hamidah Ibrahim,et al.  A review: accuracy optimization in clustering ensembles using genetic algorithms , 2011, Artificial Intelligence Review.

[31]  Hosein Alizadeh,et al.  Hierarchical cluster ensemble selection , 2015, Eng. Appl. Artif. Intell..

[32]  Daniel Hernández-Lobato,et al.  A Double Pruning Scheme for Boosting Ensembles , 2014, IEEE Transactions on Cybernetics.

[33]  Aristides Gionis,et al.  Clustering aggregation , 2005, 21st International Conference on Data Engineering (ICDE'05).

[34]  Joydeep Ghosh,et al.  Value-based customer grouping from large retail data sets , 2000, SPIE Defense + Commercial Sensing.

[35]  Pengjiang Qian,et al.  Collaborative Fuzzy Clustering From Multiple Weighted Views , 2015, IEEE Transactions on Cybernetics.

[36]  Yike Guo,et al.  Fast graph clustering with a new description model for community detection , 2017, Inf. Sci..

[37]  Joydeep Ghosh,et al.  Cluster ensembles , 2011, Data Clustering: Algorithms and Applications.

[38]  Masoud Rahgozar,et al.  Hamshahri: A standard Persian text collection , 2009, Knowl. Based Syst..

[39]  Hamid Parvin,et al.  Cluster ensemble selection based on a new cluster stability measure , 2014, Intell. Data Anal..

[40]  Tossapon Boongoen,et al.  A Link-Based Approach to the Cluster Ensemble Problem , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  William F. Punch,et al.  Data weighing mechanisms for clustering ensembles , 2013, Comput. Electr. Eng..

[42]  Hau-San Wong,et al.  Generalized Adjusted Rand Indices for cluster ensembles , 2012, Pattern Recognit..

[43]  Wenjia Wang,et al.  Object-Neighbourhood Clustering Ensemble Method , 2014, IDEAL.

[44]  Joachim M. Buhmann,et al.  A Resampling Approach to Cluster Validation , 2002, COMPSTAT.

[45]  Zhiwen Yu,et al.  Knowledge Based Cluster Ensemble for Cancer Discovery From Biomolecular Data , 2011, IEEE Transactions on NanoBioscience.

[46]  Hamid Parvin,et al.  Explicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic environments , 2018, Applied Intelligence.

[47]  Carla E. Brodley,et al.  Solving cluster ensemble problems by bipartite graph partitioning , 2004, ICML.

[48]  Hamid Parvin,et al.  Consensus Function Based on Clusters Clustering and Iterative Fusion of Base Clusters , 2019, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[49]  Hamid Parvin,et al.  Using sub-sampling and ensemble clustering techniques to improve performance of imbalanced classification , 2018, Neurocomputing.

[50]  Yun Yang,et al.  Hybrid Sampling-Based Clustering Ensemble With Global and Local Constitutions , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[51]  Hamid Parvin,et al.  A New Criterion for Clusters Validation , 2011, EANN/AIAI.

[52]  Hamid Parvin,et al.  Deep neural network as deep feature learner , 2020, J. Intell. Fuzzy Syst..

[53]  Hamid Parvin,et al.  A comprehensive study of clustering ensemble weighting based on cluster quality and diversity , 2017, Pattern Analysis and Applications.

[54]  Hamid Parvin,et al.  Elite fuzzy clustering ensemble based on clustering diversity and quality measures , 2018, Applied Intelligence.

[55]  Hamid Parvin,et al.  A linear unsupervised transfer learning by preservation of cluster-and-neighborhood data organization , 2018, Pattern Analysis and Applications.

[56]  Daoqiang Zhang,et al.  WoCE: A framework for Clustering Ensemble by Exploiting the Wisdom of Crowds Theory , 2016, IEEE Transactions on Cybernetics.

[57]  Tossapon Boongoen,et al.  Refining Pairwise Similarity Matrix for Cluster Ensemble Problem with Cluster Relations , 2008, Discovery Science.

[58]  Muhammad Yousefnezhad,et al.  Wisdom of Crowds cluster ensemble , 2016, Intell. Data Anal..

[59]  Zhiwen Yu,et al.  Hybrid Adaptive Classifier Ensemble , 2015, IEEE Transactions on Cybernetics.

[60]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[61]  Carlotta Domeniconi,et al.  Weighted cluster ensembles: Methods and analysis , 2009, TKDD.

[62]  Jingsheng Lei,et al.  A clustering ensemble: Two-level-refined co-association matrix with path-based transformation , 2015, Pattern Recognit..

[63]  Jiye Liang,et al.  Clustering ensemble selection for categorical data based on internal validity indices , 2017, Pattern Recognit..

[64]  Mohsen Moradi,et al.  CMCABC: Clustering and Memory-Based Chaotic Artificial Bee Colony Dynamic Optimization Algorithm , 2018, Int. J. Inf. Technol. Decis. Mak..

[65]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Cluster ensemble selection based on relative validity indexes , 2012, Data Mining and Knowledge Discovery.

[66]  Yuchou Chang,et al.  Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm , 2008, Pattern Recognit..

[67]  S. Nejatian,et al.  Gene Regulatory Elements Extraction in Breast Cancer by Hi-C Data Using a Meta-Heuristic Method , 2019, Russian Journal of Genetics.