The effect of zinc oxide nano- and microparticles and zinc ions on freshwater organisms of different trophic levels

[1]  V. Komov,et al.  Changes in biological characteristics of freshwater heterotrophic flagellates and cladocerans under the effect of metal oxide nano- and microparticles , 2011, Inland Water Biology.

[2]  X. Sima,et al.  Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. , 2011, The Science of the total environment.

[3]  D. Pavlov,et al.  Effect of nanoparticles on aquatic organisms , 2010, Biology Bulletin.

[4]  Wei Bai,et al.  Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism , 2010 .

[5]  Si Amar Dahoumane,et al.  ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[6]  Xiaoshan Zhu,et al.  Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna , 2009 .

[7]  Nanna B. Hartmann,et al.  Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing , 2008, Ecotoxicology.

[8]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[9]  Yan Li,et al.  Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage , 2008, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[10]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[11]  Jamie R. Lead,et al.  Aquatic Colloids and Nanoparticles: Current Knowledge and Future Trends , 2006 .

[12]  P. Hoet,et al.  Nanoparticles – known and unknown health risks , 2004, Journal of nanobiotechnology.

[13]  M. J. Servia,et al.  Seasonal and Interannual Variations in the Frequency and Severity of Deformities in Larvae of Chironomus riparius (Meigen, 1804) and Prodiamesa olivacea (Meigen, 1818) (Diptera, Chironomidae) collected in a polluted site , 2000 .

[14]  F. Ollevier,et al.  Experimental Induction of Morphological Deformities in Chironomus riparius Larvae by Chronic Exposure to Copper and Lead , 1998, Archives of environmental contamination and toxicology.

[15]  Christoph Schulte,et al.  Testing Acute Toxicity in the Embryo of Zebrafish, Brachydanio rerio, as an Alternative to the Acute Fish Test: Preliminary Results , 1994 .

[16]  C. Ingersoll,et al.  Testing Sediment Toxicity with Hyalella azteca (Amphipoda) and Chironomus riparius (Diptera) , 1990 .

[17]  W. F. Warwick Morphological Abnormalities in Chironomidae (Diptera) Larvae as Measures of Toxic Stress in Freshwater Ecosystems: Indexing Antennal Deformities in Chironomus Meigen , 1985 .

[18]  D. I. Mount,et al.  A seven‐day life cycle cladoceran toxicity test , 1984 .

[19]  Robert R. Sokal,et al.  The Principles and Practice of Statistics in Biological Research. , 1982 .

[20]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .