Quantum Information Processing in Multi-Spin Systems

Coherence and entanglement in multi-spin systems are valuable resources for quantum information processing. In this thesis, I explore the manipulation of quantum information in complex multi-spin systems, with particular reference to Nuclear Magnetic Resonance implementations. In systems with a few spins, such as molecules in the liquid phase, the use of multi-spin coherent states provides a hedge against the noise, via the encoding of information in logical degrees of freedom distributed over several spins. Manipulating multi-spin coherent states also increases the complexity of quantum operations required in a quantum processor. Here I present schemes to mitigate this problem, both in the state initialization, with particular attention to bulk ensemble quantum information processing, and in the coherent control and gate implementations. In the many-body limit provided by nuclear spins in single crystals, the limitations in the available control increase the complexity of manipulating the system; also, the equations of motion are no longer exactly solvable even in the closed-system limit. Entanglement and multi-spin coherences are essential for extending the control and the accessible information on the system. I employ entanglement in a large ensemble of spins in order to obtain an amplification of the small perturbation created by a single spin on the spin ensemble, in a scheme for the measurement of a single nuclear spin state. I furthermore use multiple quantum coherences in mixed multi-spin states as a tool to explore many-body behavior of linear chain of spins, showing their ability to perform quantum information processing tasks such as simulations and transport of information. The theoretical and experimental results of this thesis suggest that although coherent multi-spin states are particularly fragile and complex to control they could make possible the execution of quantum information processing tasks that have no classical counterparts. Thesis Supervisor: David G. Cory Title: Professor

[1]  P G Silvestrov,et al.  Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A simplified approach to optimally controlled quantum dynamics , 1996, physics/9610015.

[3]  Seth Lloyd,et al.  Resonant cancellation of off-resonant effects in a multilevel qubit , 2000 .

[4]  R. Romano,et al.  Incoherent control and entanglement for two-dimensional coupled systems (8 pages) , 2006 .

[5]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Dieter Suter,et al.  Scaling of decoherence in wide NMR quantum registers. , 2004, Physical review letters.

[7]  Masaki Aihara,et al.  Synchronized pulse control of decoherence , 2003 .

[8]  A. Overhauser Polarization of Nuclei in Metals , 1953 .

[9]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[10]  E. B. Fel'dman,et al.  Multiple-quantum dynamics of one-dimensional nuclear spin systems in solids , 2000 .

[11]  Lorenza Viola,et al.  Hadamard products of product operators and the design of gradient-diffusion experiments for simulating decoherence by NMR spectroscopy , 2000, quant-ph/0009010.

[12]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[13]  Brown,et al.  Optically detected spin coherence of single molecules. , 1993, Physical review letters.

[14]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[15]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[16]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[17]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[18]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[19]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[20]  Warren S. Warren,et al.  Theory of selective excitation of multiple‐quantum transitions , 1980 .

[21]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[23]  Timothy F. Havel,et al.  Generalized methods for the development of quantum logic gates for an NMR quantum information processor , 1999 .

[24]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[25]  B. C. Gerstein,et al.  Transient Techniques in NMR of Solids: An Introduction to Theory and Practice , 1985 .

[26]  Dieter Suter,et al.  Scalable architecture for spin-based quantum computers with a single type of gate , 2002 .

[27]  E. B. Fel'dman,et al.  Multiple quantum nuclear magnetic resonance in one-dimensional quantum spin chains , 1997 .

[28]  R. Ghose Average Liouvillian theory in nuclear magnetic resonance—principles, properties, and applications , 2000 .

[29]  Lorenza Viola Quantum control via encoded dynamical decoupling , 2002 .

[30]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[31]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[32]  David G. Cory,et al.  A generalized k-space formalism for treating the spatial aspects of a variety of NMR experiments , 1998 .

[33]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[34]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[35]  D. Meyer,et al.  Global entanglement in multiparticle systems , 2001, quant-ph/0108104.

[36]  Y. Yen Multiple-Quantum NMR in Solids , 1983 .

[37]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[38]  Exploring noiseless subsystems via nuclear magnetic resonance , 2002, quant-ph/0210057.

[39]  A. Pines,et al.  Principles and Applications of Multiple‐Quantum Nmr , 2007 .

[40]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[41]  M. Goldman,et al.  Principles of dynamic nuclear polarisation , 1978 .

[42]  Evan Matthew Fortunato Controlling open quantum systems , 2002 .

[43]  K. B. Whaley,et al.  Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.

[44]  Dimensional crossover in spin diffusion: A manifestation of the quantum Zeno effect , 1997, cond-mat/9711301.

[45]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[46]  Paola Cappellaro,et al.  Single spin measurement using cellular automata techniques. , 2006, Physical review letters.

[47]  D G Cory,et al.  Entanglement assisted metrology. , 2005, Physical review letters.

[48]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[49]  Haim Levanon,et al.  Stochastic processes in magnetic resonance , 1995 .

[50]  I. Solomon Relaxation Processes in a System of Two Spins , 1955 .

[51]  Masaki Aihara,et al.  Multipulse control of decoherence , 2002 .

[52]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[53]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[54]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[55]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[56]  J. Wrachtrup,et al.  Optical detection of magnetic resonance in a single molecule , 1993, Nature.

[57]  G. Giedke,et al.  Enhancement of electron spin coherence by optical preparation of nuclear spins. , 2005, Physical review letters.

[58]  Horacio M. Pastawski,et al.  Attenuation of polarization echoes in nuclear magnetic resonance: A study of the emergence of dynamical irreversibility in many-body quantum systems , 1998 .

[59]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[60]  W. W. Hansen,et al.  The Nuclear Induction Experiment , 1946 .

[61]  Navin Khaneja,et al.  Efficient transfer of coherence through Ising spin chains , 2002 .

[62]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[63]  Mark J Howard,et al.  Protein NMR spectroscopy , 1998, Current Biology.

[64]  Joseph L. Garbini,et al.  The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging , 1992 .

[65]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[66]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[67]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[68]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[69]  D. Cory,et al.  Time-suspension multiple-pulse sequences: applications to solid-state imaging , 1990 .

[70]  Daniel A. Lidar,et al.  Universal Leakage Elimination , 2004, quant-ph/0409049.

[71]  J. Carolan,et al.  Nuclear-Magnetic-Resonance Line Shape of a Linear Chain of Spins , 1973 .

[72]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation , 2001 .

[73]  Daniel Rugar,et al.  THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE , 1996 .

[74]  Waugh,et al.  Spin diffusion on a lattice: Classical simulations and spin coherent states. , 1995, Physical review. B, Condensed matter.

[75]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[76]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[78]  Nicolaas Bloembergen,et al.  Radiation Damping in Magnetic Resonance Experiments , 1954 .

[79]  Y. C. Cheng,et al.  Stochastic Liouville equation approach for the effect of noise in quantum computations , 2004 .

[80]  Alexander Pines,et al.  Time-Reversal Experiments in Dipolar-Coupled Spin Systems , 1971 .

[81]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[82]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[83]  R. Feynman Simulating physics with computers , 1999 .

[84]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[85]  Timothy F. Havel,et al.  Entanglement transfer experiment in NMR quantum information processing , 2002 .

[86]  K. Kraus General state changes in quantum theory , 1971 .

[87]  A. Operator formalism for double quantum NMR , 2002 .

[88]  J. Wrachtrup,et al.  Magnetic resonance on single nuclei , 1997 .

[89]  P. Murdin Pauli Exclusion Principle , 2000 .

[90]  R. Brüschweiler,et al.  Non-ergodic quasi-equilibria in short linear spin 12 chains , 1997 .

[91]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[92]  W. Lugt,et al.  Nuclear magnetic resonance line shape of fluorine in apatite , 1964 .

[93]  N. Bloembergen,et al.  On the interaction of nuclear spins in a crystalline lattice , 1949 .

[94]  Y Yamamoto,et al.  All-silicon quantum computer. , 2002, Physical review letters.

[95]  E. Stejskal Transient techniques in NMR of solids—an introduction to theory and practice: B. C. Gerstein and C. R. Dybowski. Academic Press, San Diego, 1985. 295 pages, $59.00 , 1988 .

[96]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[97]  Lorenza Viola,et al.  Verification procedures for quantum noiseless subsystems , 2003 .

[98]  D. Greenbaum Magnetization and spin-spin energy diffusion in the XY model: a diagrammatic approach. , 2005, Journal of magnetic resonance.

[99]  F. Yamaguchi,et al.  Quantum Computation in a One-Dimensional Crystal Lattice with NMR Force Microscopy , 2008 .

[100]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[101]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[102]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[103]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[104]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[105]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[106]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[107]  A. Pines,et al.  Multiple‐quantum dynamics in solid state NMR , 1985 .

[108]  E. Knill,et al.  Quantum algorithms for fermionic simulations , 2000, cond-mat/0012334.

[109]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[110]  J. Paz,et al.  Course 8: Environment-Induced Decoherence and the Transition from Quantum to Classical , 2000, quant-ph/0010011.

[111]  Domenico D'Alessandro,et al.  Incoherent control and entanglement for two-dimensional coupled systems , 2005, SPIE Defense + Commercial Sensing.

[112]  J. Yesinowski,et al.  Multiple-quantum NMR dynamics in the quasi-one-dimensional distribution of protons in hydroxyapatite , 1993 .

[113]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[114]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[115]  D G Cory,et al.  Pulse error compensating symmetric magic-echo trains. , 2003, Journal of magnetic resonance.

[116]  A. Pines,et al.  Multiple-quantum dynamics in NMR: A directed walk through Liouville space , 1987 .

[117]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[118]  Daniel Loss,et al.  Electron spin evolution induced by interaction with nuclei in a quantum dot , 2003 .

[119]  Paola Cappellaro,et al.  Encoding multiple quantum coherences in non-commuting bases , 2003 .

[120]  U. Haeberlen M. Mehring: Principles of High Resolution NMR in Solids, Springer Verlag Berlin, Heidelberg, New York 1983. 342 Seiten, Preis: DM 172,— , 1983 .

[121]  Lorenza Viola,et al.  Implementation of universal control on a decoherence-free qubit , 2002 .

[122]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[123]  Seth Lloyd,et al.  Fidelity decay as an efficient indicator of quantum chaos. , 2002, Physical review letters.

[124]  Crabb,et al.  Observation of a 96% proton polarization in irradiated ammonia. , 1990, Physical review letters.

[125]  Timothy F. Havel,et al.  Robust control of quantum information , 2003, quant-ph/0307062.

[126]  Jürgen Köhler,et al.  Magnetic resonance of a single molecular spin , 1993, Nature.

[127]  E. Knill,et al.  EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.

[128]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[129]  C D Batista,et al.  Generalized Jordan-Wigner transformations. , 2001, Physical review letters.

[130]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[131]  D Greenbaum,et al.  Spin diffusion of correlated two-spin states in a dielectric crystal. , 2004, Physical review letters.

[132]  D. Haar,et al.  Fluctuation, relaxation and resonance in magnetic systems : Scottish Universities's Summer School, 1961 , 1962 .

[133]  A. I. Solomon,et al.  Complete controllability of quantum systems , 2000, quant-ph/0010031.

[134]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[135]  J. Yesinowski,et al.  1H and 19F Multiple-Quantum NMR Dynamics in Quasi-One-Dimensional Spin Clusters in Apatites , 1996 .

[136]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[137]  A. Redfield,et al.  Nuclear Magnetism: Order and Disorder , 1982 .

[138]  Daniel Loss,et al.  Spintronics and quantum dots for quantum computing and quantum communication , 2000 .

[139]  D. Cory,et al.  Multispin dynamics of the solid-state NMR free induction decay , 2005, cond-mat/0501578.

[140]  E. Yablonovitch,et al.  Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor , 2004, Nature.

[141]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[142]  D. G. Cory,et al.  FIRST DIRECT MEASUREMENT OF THE SPIN DIFFUSION RATE IN A HOMOGENOUS SOLID , 1998 .

[143]  A. J. Shaka,et al.  An improved sequence for broadband decoupling: WALTZ-16 , 1983 .

[144]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[145]  D G Cory,et al.  Principles of control for decoherence-free subsystems. , 2006, The Journal of chemical physics.

[146]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[147]  Lorenza Viola,et al.  Constructing Qubits in Physical Systems , 2001 .

[148]  D. Mattis,et al.  The Theory of Magnetism I , 1981 .

[149]  Non-Markovian decay beyond the Fermi Golden Rule: Survival collapse of the polarization in spin chains , 2005, quant-ph/0511176.

[150]  F. Verstraete,et al.  Mapping local Hamiltonians of fermions to local Hamiltonians of spins , 2005, cond-mat/0508353.