The Pascal Visual Object Classes (VOC) Challenge

The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

[1]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[2]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[3]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[4]  P. Duygulu,et al.  Visual categorization with bags of keypoints , 2002, eccv 2002.

[5]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[6]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  B. Schiele,et al.  Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[10]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[11]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[12]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[13]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[14]  Cees G. M. Snoek,et al.  Early versus late fusion in semantic video analysis , 2005, MULTIMEDIA '05.

[15]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[19]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[20]  Christoph Schnörr,et al.  Learning of Graphical Models and Efficient Inference for Object Class Recognition , 2006, DAGM-Symposium.

[21]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[22]  Jan-Mark Geusebroek,et al.  Compact Object Descriptors from Local Colour Invariant Histograms , 2006, BMVC.

[23]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  Emine Yilmaz,et al.  Estimating average precision with incomplete and imperfect judgments , 2006, CIKM '06.

[25]  Pietro Perona,et al.  Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition , 2007, International Journal of Computer Vision.

[26]  Cor J. Veenman,et al.  Robust Scene Categorization by Learning Image Statistics in Context , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[27]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[28]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[29]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[30]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[32]  Dong Wang,et al.  Relay Boost Fusion for Learning Rare Concepts in Multimedia , 2006, CIVR.

[33]  Ivan Laptev,et al.  Improvements of Object Detection Using Boosted Histograms , 2006, BMVC.

[34]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[35]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[36]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[37]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[38]  Andrew Zisserman,et al.  An Exemplar Model for Learning Object Classes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Antonio Torralba,et al.  Describing Visual Scenes Using Transformed Objects and Parts , 2008, International Journal of Computer Vision.

[41]  Nicu Sebe,et al.  Do Colour Interest Points Improve Image Retrieval? , 2007, 2007 IEEE International Conference on Image Processing.

[42]  Cordelia Schmid,et al.  Semantic Hierarchies for Visual Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[44]  Michael Isard,et al.  General Theory , 1969 .

[45]  Benjamin Z. Yao,et al.  Introduction to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks , 2007, EMMCVPR.

[46]  Antonio Torralba,et al.  Sharing Visual Features for Multiclass and Multiview Object Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Dong Wang,et al.  The feature and spatial covariant kernel: adding implicit spatial constraints to histogram , 2007, CIVR '07.

[48]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Pietro Perona,et al.  Some Objects Are More Equal Than Others: Measuring and Predicting Importance , 2008, ECCV.

[51]  Jorma Laaksonen,et al.  Tkk Reports in Information and Computer Science Techniques for Image Classification, Object Detection and Object Segmentation Tkk Reports in Information and Computer Science Techniques for Image Classification, Object Detection and Object Segmentation , 2022 .

[52]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[53]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Koen E. A. van de Sande,et al.  Evaluation of color descriptors for object and scene recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Bernt Schiele,et al.  Decomposition, discovery and detection of visual categories using topic models , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  David A. Forsyth,et al.  Utility data annotation with Amazon Mechanical Turk , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[58]  Luc Van Gool,et al.  An Efficient Shared Multi-Class Detection Cascade , 2008, BMVC.

[59]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .