Multi-objective Optimization with Unbounded Solution Sets
暂无分享,去创建一个
[1] Edgar Tello-Leal,et al. A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms , 2016, Comput. Intell. Neurosci..
[2] Anne Auger,et al. Evolution Strategies , 2018, Handbook of Computational Intelligence.
[3] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[4] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[5] Isao Ono,et al. Theoretical Foundation for CMA-ES from Information Geometry Perspective , 2012, Algorithmica.
[6] Christian Igel,et al. Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search , 2009, ICML '09.
[7] Ann Nowé,et al. Multi-objective reinforcement learning using sets of pareto dominating policies , 2014, J. Mach. Learn. Res..
[8] Oswin Krause,et al. Unbounded Population MO-CMA-ES for the Bi-Objective BBOB Test Suite , 2016, GECCO.
[9] Tobias Friedrich,et al. Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice , 2009, EMO.
[10] Oswin Krause,et al. A More Efficient Rank-one Covariance Matrix Update for Evolution Strategies , 2015, FOGA.
[11] Christian Igel,et al. Improved step size adaptation for the MO-CMA-ES , 2010, GECCO '10.
[12] Anne Auger,et al. COCO: The Bi-objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite , 2016, ArXiv.
[13] Bernhard Sendhoff,et al. Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).
[14] Christian Igel,et al. Multi-Objective Optimization of Support Vector Machines , 2006, Multi-Objective Machine Learning.
[15] Jens Jägersküpper,et al. Probabilistic runtime analysis of (1 +, λ),ES using isotropic mutations , 2006, GECCO '06.
[16] Christian Igel,et al. Uncertainty Handling in Model Selection for Support Vector Machines , 2008, PPSN.
[17] S. Griffis. EDITOR , 1997, Journal of Navigation.
[18] Christian Igel. Evolutionary Kernel Learning , 2010, Encyclopedia of Machine Learning.
[19] Nicola Beume,et al. SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..
[20] Léon Bottou,et al. The Tradeoffs of Large Scale Learning , 2007, NIPS.
[21] A. Auger. Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .
[22] Tobias Friedrich,et al. Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects , 2008, ISAAC.
[23] Anne Auger,et al. Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.
[24] M. Powell. The NEWUOA software for unconstrained optimization without derivatives , 2006 .
[25] Tobias Glasmachers,et al. Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES) , 2016, GECCO.
[26] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.
[27] Stefan Roth,et al. Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.
[28] Risto Miikkulainen,et al. Accelerated Neural Evolution through Cooperatively Coevolved Synapses , 2008, J. Mach. Learn. Res..
[29] A. E. Eiben,et al. From evolutionary computation to the evolution of things , 2015, Nature.
[30] Bernd Bischl,et al. A comparative study on large scale kernelized support vector machines , 2016, Adv. Data Anal. Classif..
[31] Verena Heidrich-Meisner,et al. Neuroevolution strategies for episodic reinforcement learning , 2009, J. Algorithms.
[32] Oswin Krause,et al. CMA-ES with Optimal Covariance Update and Storage Complexity , 2016, NIPS.
[33] Tobias Friedrich,et al. Speeding up many-objective optimization by Monte Carlo approximations , 2013, Artif. Intell..