Quantity quantiles linear regression

We show that the definition of the θth sample quantile as the solution to a minimization problem introduced by Koenker and Bassett (Econometrica 46(1):33–50, 1978) can be easily extended to obtain an analogous definition for the θth sample quantity quantile widely investigated and applied in the Italian literature. The key point is the use of the first-moment distribution of the variable instead of its distribution function. By means of this definition we introduce a linear regression model for quantity quantiles and analyze some properties of the residuals. In Sect. 4 we show a brief application of the methodology proposed.

[1]  B. Bru Anders Hald, "A History of Mathematical Statistics from 1750 to 1930", New-York-Chicheste-Weinhei-Brisban-Singapor-Toronto, John Willey & Sons, Inc., 1998 , 2005 .

[2]  A. Hald A history of mathematical statistics from 1750 to 1930 , 1998 .

[3]  R. Koenker Quantile Regression: Name Index , 2005 .

[4]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[5]  Patrizia Berti,et al.  Concentration Curve and Index, Zenga's , 2006 .

[6]  Roger Koenker,et al.  L-estimatton for linear heteroscedastic models , 1994 .

[7]  F. Vega-Redondo Complex Social Networks: Econometric Society Monographs , 2007 .

[8]  R. Koenker,et al.  Asymptotic Theory of Least Absolute Error Regression , 1978 .

[9]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[10]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[11]  Stephen M. Stigler,et al.  Studies in the history of probability and statistics XL Boscovich, Simpson and a 1760 manuscript note on fitting a linear relation , 1984 .

[12]  P. Radaelli,et al.  Linear Regression for Quantity Quantiles , 2006 .

[13]  F. Y. Edgeworth,et al.  F.Y. Edgeworth's Contributions to Mathematical Statistics , 1972 .

[14]  L. Bauwens,et al.  Econometrics , 2005 .

[15]  Concentration Curves And Concentration Indexes Derived From Them , 1990 .

[16]  R. Koenker,et al.  Regression Quantiles , 2007 .

[17]  M. C. Jones Expectiles and M-quantiles are quantiles , 1994 .