Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing

The observation of an unequivocal quantum speedup remains an elusive objective for quantum computing. The D-Wave quantum annealing processors have been at the forefront of experimental attempts to address this goal, given their relatively large numbers of qubits and programmability. A complete determination of the optimal time-to-solution (TTS) using these processors has not been possible to date, preventing definitive conclusions about the presence of a scaling advantage. The main technical obstacle has been the inability to verify an optimal annealing time within the available range. Here we overcome this obstacle and present a class of problem instances for which we observe an optimal annealing time using a D-Wave 2000Q processor over a range spanning up to more than $2000$ qubits. This allows us to perform an optimal TTS benchmarking analysis and perform a comparison to several classical algorithms, including simulated annealing, spin-vector Monte Carlo, and discrete-time simulated quantum annealing. We establish the first example of a scaling advantage for an experimental quantum annealer over classical simulated annealing: we find that the D-Wave device exhibits certifiably better scaling than simulated annealing, with $95\%$ confidence, over the range of problem sizes that we can test. However, we do not find evidence for a quantum speedup: simulated quantum annealing exhibits the best scaling by a significant margin. Our construction of instance classes with verifiably optimal annealing times opens up the possibility of generating many new such classes, paving the way for further definitive assessments of scaling advantages using current and future quantum annealing devices.

[1]  Ben Reichardt,et al.  The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.

[2]  Matthias Troyer,et al.  Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing , 2017, 1703.08189.

[3]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[4]  H. Katzgraber,et al.  Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians. , 2016, Physical review letters.

[5]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[6]  H. Neven,et al.  Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations , 2016, 1603.01293.

[7]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[8]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  L. Bieche,et al.  On the ground states of the frustration model of a spin glass by a matching method of graph theory , 1980 .

[10]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[11]  Gernot Schallerralf THE ROLE OF SYMMETRIES IN ADIABATIC QUANTUM ALGORITHMS , 2010 .

[12]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[13]  Wim van Dam,et al.  Discrepancies between asymptotic and exact spectral-gap analyses of quantum adiabatic barrier tunneling , 2017 .

[14]  D. McMahon Adiabatic Quantum Computation , 2008 .

[15]  B. Zhang,et al.  Advantages of Unfair Quantum Ground-State Sampling , 2017, Scientific Reports.

[16]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[17]  Daniel A. Lidar,et al.  Quantum annealing versus classical machine learning applied to a simplified computational biology problem , 2018, npj Quantum Information.

[18]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  Daniel A. Lidar,et al.  Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes. , 2016, Physical review letters.

[21]  Dario Gil The Future is Quantum , 2019 .

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[24]  Gernot Schaller,et al.  The role of symmetries in adiabatic quantum algorithms , 2007, Quantum Inf. Comput..

[25]  Daniel A. Lidar,et al.  Optimally Stopped Optimization , 2016, 1608.05764.

[26]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[27]  I. Hen,et al.  Temperature Scaling Law for Quantum Annealing Optimizers. , 2017, Physical review letters.

[28]  M. Paranjape,et al.  Macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems , 2014, 1403.4208.

[29]  Milad Marvian,et al.  Error suppression for Hamiltonian quantum computing in Markovian environments , 2016, 1612.01633.

[30]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[31]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[32]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[33]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[34]  R. Feynman Simulating physics with computers , 1999 .

[35]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[36]  Andrew D. King,et al.  Performance of a quantum annealer on range-limited constraint satisfaction problems , 2015, ArXiv.

[37]  Daniel A. Lidar,et al.  Consistency tests of classical and quantum models for a quantum annealer , 2014, 1403.4228.

[38]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[39]  A. Sandvik Stochastic series expansion method for quantum Ising models with arbitrary interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[41]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[42]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[43]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[44]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[45]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[46]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[47]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms versus Simulated Annealing , 2002, quant-ph/0201031.

[48]  Helmut G. Katzgraber,et al.  Quantum annealing for problems with ground-state degeneracy , 2008 .

[49]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[50]  Alex Selby Efficient subgraph-based sampling of Ising-type models with frustration , 2014, 1409.3934.

[51]  Alejandro Perdomo-Ortiz,et al.  Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches , 2016, 1604.01746.

[52]  Evgeny Andriyash,et al.  Can quantum Monte Carlo simulate quantum annealing , 2017, 1703.09277.

[53]  D. Lidar,et al.  Adiabatic quantum computation in open systems. , 2005, Physical review letters.

[54]  E. Crosson,et al.  The performance of the quantum adiabatic algorithm on spike Hamiltonians , 2015, 1511.06991.

[55]  H. Neven,et al.  Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. , 2015, Physical review letters.

[56]  Andrew J. Ochoa,et al.  Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension. , 2015, Physical review letters.

[57]  Daniel A. Lidar,et al.  Reexamining classical and quantum models for the D-Wave One processor , 2014, 1409.3827.

[58]  Gene Wagenbreth,et al.  Off-diagonal expansion quantum Monte Carlo. , 2017, Physical review. E.

[59]  M. Amin Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.

[60]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[61]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[62]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[63]  Philip J D Crowley,et al.  Anisotropic Landau-Lifshitz-Gilbert models of dissipation in qubits , 2016 .

[64]  Barbara M. Terhal,et al.  Complexity of Stoquastic Frustration-Free Hamiltonians , 2008, SIAM J. Comput..

[65]  Adam D. Bookatz,et al.  Error suppression in Hamiltonian-based quantum computation using energy penalties , 2014, 1407.1485.

[66]  M. Troyer,et al.  Quantum versus classical annealing of Ising spin glasses , 2014, Science.

[67]  Heiko Rieger,et al.  Application of a continuous time cluster algorithm to the two-dimensional random quantum Ising ferromagnet , 1999 .

[68]  Daniel A. Lidar,et al.  Solving a Higgs optimization problem with quantum annealing for machine learning , 2017, Nature.

[69]  Catherine C. McGeoch,et al.  Benchmarking a quantum annealing processor with the time-to-target metric , 2015, 1508.05087.

[70]  Zhang Jiang,et al.  Non-commuting two-local Hamiltonians for quantum error suppression , 2015, Quantum Inf. Process..

[71]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[72]  D. Lidar,et al.  Quantum trajectories for time-dependent adiabatic master equations , 2017, 1710.03431.

[73]  Nando de Freitas,et al.  From Fields to Trees , 2004, UAI.

[74]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[75]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[76]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.

[77]  Matthew B. Hastings,et al.  Obstructions to classically simulating the quantum adiabatic algorithm , 2013, Quantum Inf. Comput..

[78]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[79]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[80]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms with Different Paths , 2002, quant-ph/0208135.

[81]  F. Krzakala,et al.  Simple glass models and their quantum annealing. , 2008, Physical Review Letters.

[82]  Daniel A. Lidar,et al.  Quantum adiabatic Markovian master equations , 2012, 1206.4197.

[83]  Helmut G. Katzgraber,et al.  The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again) , 2017, 1703.00622.

[84]  Daniel A. Lidar,et al.  Tunneling and speedup in quantum optimization for permutation-symmetric problems , 2015, 1511.03910.

[85]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[86]  J. Houdayer,et al.  A cluster Monte Carlo algorithm for 2-dimensional spin glasses , 2001 .

[87]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[88]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[89]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[90]  Catherine C. McGeoch,et al.  Quantum Annealing amid Local Ruggedness and Global Frustration , 2017, Journal of the Physical Society of Japan.

[91]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.