Perfect lattices over imaginary quadratic number fields
暂无分享,去创建一个
[1] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[2] Richard G. Swan,et al. Generators and relations for certain special linear groups , 1968 .
[3] H. Henn. The Cohomology of SL(3, ℤ[1/2]) , 1999 .
[4] Dieter Flöge. Zur Struktur derPSL2 über einigen imaginär-quadratischen Zahlringen , 1983 .
[5] B. Casselman. Introduction to quadratic forms , 2016 .
[6] Avner Ash,et al. Small-dimensional classifying spaces for arithmetic subgroups of general linear groups , 1984 .
[7] Mathieu Dutour Sikiric,et al. Classification of eight dimensional perfect forms , 2006 .
[8] A. Schürmann,et al. Computational geometry of positive definite quadratic forms : polyhedral reduction theories, algorithms, and applications , 2008 .
[9] R. Schulze-Pillot,et al. Quadratic Forms—Algebra, Arithmetic, and Geometry , 2009 .
[10] Réduction de formes quadratiques dans un corps algébrique fini , 1949 .
[11] M. Koecher. Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. II , 1961 .
[12] Jürgen Opgenorth,et al. Dual Cones and the Voronoi Algorithm , 2001, Exp. Math..
[13] Dan Yasaki. Hyperbolic Tessellations Associated to Bianchi Groups , 2010, ANTS.
[14] M. Koecher. Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I , 1960 .
[15] William Stein,et al. Modular forms, a computational approach , 2007 .
[16] Fritz Grunewald,et al. Groups Acting on Hyperbolic Space , 1998 .
[17] J. Martinet. Perfect Lattices in Euclidean Spaces , 2010 .
[18] L. Bianchi. Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî , 1892 .
[19] G. Zolotareff,et al. Sur les formes quadratiques positives , 1877 .
[20] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[21] Fundamental Hermite constants of linear algebraic groups , 2003 .
[22] A. Schuermann. Enumerating perfect forms , 2009, 0901.1587.
[23] Alexander D. Rahm,et al. The integral homology of $ PSL_2$ of imaginary quadratic integers with nontrivial class group , 2009, 0903.4517.
[24] G. Nebe,et al. ON THE CLASSIFICATION OF EVEN UNIMODULAR LATTICES WITH A COMPLEX STRUCTURE , 2012 .
[25] Wilhelm Plesken,et al. Computing Isometries of Lattices , 1997, J. Symb. Comput..
[26] R. Jacobowitz. Review: O. T. O'Meara, Introduction to quadratic forms , 1965 .
[27] Bertrand Meyer. Generalised Hermite Constants, Voronoi Theory and Heights on Flag Varieties , 2008, 0804.0292.
[28] Christophe Soulé,et al. The cohomology of SL3(Z) , 1978 .