Perfect lattices over imaginary quadratic number fields

We present an adaptation of Voronoi theory for imaginary quadratic number fields of class number greater than 1. This includes a characterisation of extreme Hermitian forms which is analogous to the classic characterisation of extreme quadratic forms as well as a version of Voronoi's famous algorithm which may be used to enumerate all perfect Hermitian forms for a given imaginary quadratic number field in dimensions 2 and 3. We also present an application of the algorithm which allows to determine generators of the general linear group of an $\O_K$-lattice.

[1]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[2]  Richard G. Swan,et al.  Generators and relations for certain special linear groups , 1968 .

[3]  H. Henn The Cohomology of SL(3, ℤ[1/2]) , 1999 .

[4]  Dieter Flöge Zur Struktur derPSL2 über einigen imaginär-quadratischen Zahlringen , 1983 .

[5]  B. Casselman Introduction to quadratic forms , 2016 .

[6]  Avner Ash,et al.  Small-dimensional classifying spaces for arithmetic subgroups of general linear groups , 1984 .

[7]  Mathieu Dutour Sikiric,et al.  Classification of eight dimensional perfect forms , 2006 .

[8]  A. Schürmann,et al.  Computational geometry of positive definite quadratic forms : polyhedral reduction theories, algorithms, and applications , 2008 .

[9]  R. Schulze-Pillot,et al.  Quadratic Forms—Algebra, Arithmetic, and Geometry , 2009 .

[10]  Réduction de formes quadratiques dans un corps algébrique fini , 1949 .

[11]  M. Koecher Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. II , 1961 .

[12]  Jürgen Opgenorth,et al.  Dual Cones and the Voronoi Algorithm , 2001, Exp. Math..

[13]  Dan Yasaki Hyperbolic Tessellations Associated to Bianchi Groups , 2010, ANTS.

[14]  M. Koecher Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I , 1960 .

[15]  William Stein,et al.  Modular forms, a computational approach , 2007 .

[16]  Fritz Grunewald,et al.  Groups Acting on Hyperbolic Space , 1998 .

[17]  J. Martinet Perfect Lattices in Euclidean Spaces , 2010 .

[18]  L. Bianchi Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî , 1892 .

[19]  G. Zolotareff,et al.  Sur les formes quadratiques positives , 1877 .

[20]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[21]  Fundamental Hermite constants of linear algebraic groups , 2003 .

[22]  A. Schuermann Enumerating perfect forms , 2009, 0901.1587.

[23]  Alexander D. Rahm,et al.  The integral homology of $ PSL_2$ of imaginary quadratic integers with nontrivial class group , 2009, 0903.4517.

[24]  G. Nebe,et al.  ON THE CLASSIFICATION OF EVEN UNIMODULAR LATTICES WITH A COMPLEX STRUCTURE , 2012 .

[25]  Wilhelm Plesken,et al.  Computing Isometries of Lattices , 1997, J. Symb. Comput..

[26]  R. Jacobowitz Review: O. T. O'Meara, Introduction to quadratic forms , 1965 .

[27]  Bertrand Meyer Generalised Hermite Constants, Voronoi Theory and Heights on Flag Varieties , 2008, 0804.0292.

[28]  Christophe Soulé,et al.  The cohomology of SL3(Z) , 1978 .