Estimating partially linear panel data models with one-way error components

We consider the problem of estimating a partially linear panel data model whenthe error follows an one-way error components structure. We propose a feasiblesemiparametric generalized least squares (GLS) type estimator for estimating the coefficient of the linear component and show that it is asymptotically more efficient than a semiparametric ordinary least squares (OLS) type estimator. We also discussed the case when the regressor of the parametric component is correlated with the error, and propose an instrumental variable GLS-type semiparametric estimator.

[1]  P. Anglin,et al.  SEMIPARAMETRIC ESTIMATION OF A HEDONIC PRICE FUNCTION , 1996 .

[2]  J. Stock Nonparametric Policy Analysis , 1989 .

[3]  Donald W. K. Andrews,et al.  Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity , 1994 .

[4]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[5]  Qi Li,et al.  Semiparametric Panel Date Models with Hetergeneous Dynamic Adjustment: Theoretical Considerations and an Application to Labor Supply , 1994 .

[6]  Adrian Pagan,et al.  The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics , 1980 .

[7]  Qi Li,et al.  SEMIPARAMETRIC ESTIMATION OF PARTIALLY LINEAR PANEL DATA MODELS , 1996 .

[8]  W. J. Hall,et al.  Information and Asymptotic Efficiency in Parametric-Nonparametric Models , 1983 .

[9]  P. Robinson Nearest-neighbour estimation of semiparametric regression models , 1995 .

[10]  Stephen G. Donald,et al.  Series estimation of semilinear models , 1994 .

[11]  W. Newey,et al.  Semiparametric Efficiency Bounds , 1990 .

[12]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[13]  S. Cosslett Efficiency Bounds for Distribution-free Estimators of the Binary , 1987 .

[14]  A. Soest,et al.  Semi-parametric estimation of the sample selection model , 1993 .

[15]  Marc Nerlove,et al.  Further evidence on the estimation of dynamic economic relations from a time series of cross-sections , 1971 .

[16]  G. Chamberlain Asymptotic efficiency in semi-parametric models with censoring , 1986 .

[17]  Hung Chen,et al.  Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .

[18]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[19]  A. Deolalikar,et al.  The Intrahousehold Demand for Nutrients in Rural South India Individual Estimates, Fixed Effects, and Permanent Income , 1990 .

[20]  Qi Li,et al.  On the root-N-consistent semiparametric estimation of partially linear models , 1996 .

[21]  D. Gould Immigrant Links to the Home Country: Empirical Implications for U.S. Bilateral Trade Flows , 1994 .

[22]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[23]  Bo E. Honoré,et al.  Trimmed LAD and Least Squares Estimation of Truncated and Censored Regression Models with Fixed Effects , 1992 .

[24]  Oliver Linton,et al.  SECOND ORDER APPROXIMATION IN THE PARTIALLY LINEAR REGRESSION MODEL , 1995 .

[25]  Marc Nerlove,et al.  Pooling Cross-section and Time-series Data in the Estimation of a Dynamic Model , 1966 .

[26]  Cheng Hsiao,et al.  Testing serial correlation in semiparametric panel data models , 1998 .

[27]  James L. Powell,et al.  Semiparametric Estimation of Selection Models: Some Empirical Results , 1990 .

[28]  A semiparametric efficiency bound of a disequilibrium model without observed regime , 1994 .

[29]  H. White Asymptotic theory for econometricians , 1985 .

[30]  Gary Chamberlain,et al.  Efficiency Bounds for Semiparametric Regression , 1992 .

[31]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[32]  J. Powell,et al.  Semiparametric estimation of censored selection models with a nonparametric selection mechanism , 1993 .