Optimal path finding in direction, location, and time dependent environments

This article examines optimal path finding problems where cost function and constraints are direction, location, and time dependent. Recent advancements in sensor and data-processing technology facilitate the collection of detailed real-time information about the environment surrounding a ground vehicle, an airplane, or a naval vessel. We present a navigation model that makes use of such information. We relax a number of assumptions from existing literature on path-finding problems and create an accurate, yet tractable, model suitable for implementation for a large class of problems. We present a dynamic programming model which integrates our earlier results for direction-dependent, time and space homogeneous environment, and consequently, improves its accuracy, efficiency, and run-time. The proposed path finding model also addresses limited information about the surrounding environment, control-feasibility of the considered paths, such as sharpest feasible turns a vehicle can make, and computational demands of a time-dependent environment. To demonstrate the applicability and performance of our path-finding algorithm, computational experiments for a short-range ship routing in dynamic wave-field problem are presented. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012

[1]  Optimal Short-Range Routing of Vessels in a Seaway , 2009 .

[2]  Yajun Wang,et al.  Approximate shortest paths in anisotropic regions , 2007, SODA '07.

[3]  Neil C. Rowe Obtaining Optimal Mobile-Robot Paths with Nonsmooth Anisotropic Cost Functions Using Qualitative-State Reasoning , 1997, Int. J. Robotics Res..

[4]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[5]  Robert Ellis,et al.  Calculus with Analytical Geometry , 1989 .

[6]  Joseph S. B. Mitchell,et al.  L1 shortest paths among polygonal obstacles in the plane , 1992, Algorithmica.

[7]  Anastassios N. Perakis,et al.  Deterministic Minimal Time Vessel Routing , 1990, Oper. Res..

[8]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[9]  David Lyzenga,et al.  Surface-Wavefield Estimation From Coherent Marine Radars , 2010, IEEE Geoscience and Remote Sensing Letters.

[10]  Jean-Daniel Boissonnat,et al.  Shortest paths of bounded curvature in the plane , 1994, J. Intell. Robotic Syst..

[11]  Joel T. Johnson,et al.  A Numerical Study of the Retrieval of Sea Surface Height Profiles From Low Grazing Angle Radar Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[13]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[14]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[15]  Andy Philpott,et al.  Yacht velocity prediction using mathematical programming , 1993 .

[16]  Frank D. Faulkner A GENERAL NUMERICAL METHOD FOR DETERMINING OPTIMUM SHIP ROUTES , 1963 .

[17]  E. Blum,et al.  The Mathematical Theory of Optimal Processes. , 1963 .

[18]  Okey Nwogu,et al.  Interaction of finite-amplitude waves with vertically sheared current fields , 2009, Journal of Fluid Mechanics.

[19]  A. F. Filippov On Certain Questions in the Theory of Optimal Control , 1962 .

[20]  Zheng Sun,et al.  On finding approximate optimal paths in weighted regions , 2006, J. Algorithms.

[21]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[22]  Joseph S. B. Mitchell Shortest paths among obstacles in the plane , 1996, Int. J. Comput. Geom. Appl..

[23]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[24]  Gordon T. Wilfong,et al.  Planning constrained motion , 1988, STOC '88.

[25]  I. M. Ovacikt,et al.  Rolling horizon algorithms for a single-machine dynamic scheduling problem with sequence-dependent setup times , 1994 .

[26]  Zhen Li,et al.  Path Following with Roll Constraints for Marine Surface Vessels in Wave Fields. , 2009 .

[27]  Jay Lee,et al.  Research Article: Extensions to least-cost path algorithms for roadway planning , 2003, Int. J. Geogr. Inf. Sci..

[28]  Jean-Daniel Boissonnat,et al.  Shortest path synthesis for Dubins non-holonomic robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[29]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[30]  Joseph S. B. Mitchell,et al.  A new algorithm for shortest paths among obstacles in the plane , 1991, Annals of Mathematics and Artificial Intelligence.

[31]  Zheng Sun,et al.  On finding energy-minimizing paths on terrains , 2005, IEEE Transactions on Robotics.

[32]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[33]  Jürgen Sellen,et al.  Direction weighted shortest path planning , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[34]  W Marks,et al.  AN AUTOMATED SYSTEM FOR OPTIMUM SHIP ROUTING , 1968 .

[35]  H. S. Story,et al.  Fermat's principle, Huygens' principle, Hamilton's optics and sailing strategy , 1998 .

[36]  Phillip R. Chandler,et al.  Tour Planning for an Unmanned Air Vehicle Under Wind Conditions (Preprint) , 2007 .

[37]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[38]  Ismail Chabini,et al.  Discrete Dynamic Shortest Path Problems in Transportation Applications: Complexity and Algorithms with Optimal Run Time , 1998 .

[39]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[40]  Jörg-Rüdiger Sack,et al.  Shortest Anisotropic Paths on Terrains , 1999, ICALP.

[41]  J. Sussmann,et al.  SHORTEST PATHS FOR THE REEDS-SHEPP CAR: A WORKED OUT EXAMPLE OF THE USE OF GEOMETRIC TECHNIQUES IN NONLINEAR OPTIMAL CONTROL. 1 , 1991 .

[42]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[43]  Andy Philpott,et al.  Optimal Sailing Routes with Uncertain Weather , 2000 .

[44]  J. Karl Hedrick,et al.  Optimal path planning in a constant wind with a bounded turning rate , 2005 .

[45]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[46]  Philippe Souères,et al.  Optimal trajectories for nonholonomic mobile robots , 1998 .

[47]  Leila De Floriani,et al.  Applications of Computational Geometry to Geographic Information Systems , 2000, Handbook of Computational Geometry.

[48]  William J. Plant,et al.  Simultaneous Measurement of Ocean Winds and Waves with an Airborne Coherent Real Aperture Radar , 2005 .

[49]  Rolf Rysdyk,et al.  Waypoint Guidance for Small UAVs in Wind , 2005 .

[50]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[51]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[52]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[53]  David F. Rogers,et al.  THE SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS , 1977 .

[54]  Vu Duong,et al.  Trajectory-based Air Traffic Management (TB-ATM) under Weather Uncertainty , 2001 .

[55]  Marinos Kavouras,et al.  On the Determination of the Optimum Path in Space , 1995, COSIT.

[56]  Anastassios N. Perakis,et al.  Minimal Time Vessel Routing in a Time-Dependent Environment , 1989, Transp. Sci..

[57]  Jonathan Halpern,et al.  Shortest route with time dependent length of edges and limited delay possibilities in nodes , 1977, Math. Methods Oper. Res..

[58]  A. B. Philpott,et al.  17. Stochastic Optimization and Yacht Racing , 2005, Applications of Stochastic Programming.

[59]  A N Perakis,et al.  NEW MODELS FOR MINIMAL TIME SHIP WEATHER ROUTING , 1988 .

[60]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[61]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[62]  Ariel Orda,et al.  Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length , 1990, JACM.

[63]  Raymond L. Smith,et al.  Rolling Horizon Procedures in Nonhomogeneous Markov Decision Processes , 1992, Oper. Res..

[64]  Jean-Daniel Boissonnat,et al.  A note on shortest paths in the plane subject to a constraint on the derivative of the curvature , 1994 .

[65]  K. Cooke,et al.  The shortest route through a network with time-dependent internodal transit times , 1966 .

[66]  Robert L. Smith,et al.  Fastest Paths in Time-dependent Networks for Intelligent Vehicle-Highway Systems Application , 1993, J. Intell. Transp. Syst..

[67]  Irina S. Dolinskaya,et al.  Path Planning in an Anisotropic Medium , 2012 .

[68]  Andy Philpott Optimising Yacht Routes under Uncertainty , 2000 .

[69]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[70]  Jean-Paul Laumond,et al.  Guidelines in nonholonomic motion planning for mobile robots , 1998 .

[71]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[72]  Chung-Yee Lee,et al.  Rolling Planning Horizons: Error Bounds for the Dynamic Lot Size Model , 1986, Math. Oper. Res..

[73]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[74]  Irina S. Dolinskaya,et al.  Time-optimal trajectories with bounded curvature in anisotropic media , 2012, Int. J. Robotics Res..

[75]  S. L. Parsonson,et al.  Calculus with Analytical Geometry , 1969 .

[76]  Zheng Sun,et al.  Movement Planning in the Presence of Flows , 2003, Algorithmica.

[77]  H. Alt,et al.  Visibility graphs and obstacle-avoiding shortest paths , 1988, ZOR Methods Model. Oper. Res..

[78]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[79]  Neil C. Rowe,et al.  Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects , 1990, IEEE Trans. Robotics Autom..

[80]  Walter Collischonn,et al.  A direction dependent least-cost-path algorithm for roads and canals , 2000, Int. J. Geogr. Inf. Sci..

[81]  Bruce G. Terrell,et al.  National Oceanic and Atmospheric Administration , 2020, Federal Regulatory Guide.

[82]  L. El Ghaoui,et al.  Algorithms for air traffic flow management under stochastic environments , 2004, Proceedings of the 2004 American Control Conference.

[83]  E. Zermelo Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung , 1931 .

[84]  Frank D. Faulkner,et al.  NUMERICAL METHODS FOR DETERMINING OPTIMUM SHIP ROUTES , 1963 .

[85]  P. Souéres,et al.  Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..

[86]  Steven M. LaValle,et al.  Time-optimal paths for a Dubins airplane , 2007, 2007 46th IEEE Conference on Decision and Control.

[87]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.