The geometry of graphs and some of its algorithmic applications

AbstractIn this paper we explore some implications of viewing graphs asgeometric objects. This approach offers a new perspective on a number of graph-theoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that respect themetric of the (possibly weighted) graph. Given a graphG we map its vertices to a normed space in an attempt to (i) keep down the dimension of the host space, and (ii) guarantee a smalldistortion, i.e., make sure that distances between vertices inG closely match the distances between their geometric images.In this paper we develop efficient algorithms for embedding graphs low-dimensionally with a small distortion. Further algorithmic applications include:•A simple, unified approach to a number of problems on multicommodity flows, including the Leighton-Rao Theorem [37] and some of its extensions. We solve an open question in this area, showing that the max-flow vs. min-cut gap in thek-commodities problem isO(logk). Our new deterministic polynomial-time algorithm finds a (nearly tight) cut meeting this bound.•For graphs embeddable in low-dimensional spaces with a small distortion, we can find low-diameter decompositions (in the sense of [7] and [43]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph.•In graphs embedded this way, small balancedseparators can be found efficiently. Given faithful low-dimensional representations of statistical data, it is possible to obtain meaningful and efficientclustering. This is one of the most basic tasks in pattern-recognition. For the (mostly heuristic) methods used in the practice of pattern-recognition, see [20], especially chapter 6.Our studies of multicommodity flows also imply that every embedding of (the metric of) ann-vertex, constant-degree expander into a Euclidean space (of any dimension) has distortion Ω(logn). This result is tight, and closes a gap left open by Bourgain [12].

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[3]  L. Danzer,et al.  Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee , 1962 .

[4]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[5]  B. Rothschild,et al.  Feasibility of Two Commodity Network Flows , 1966, Oper. Res..

[6]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[7]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[8]  A.S.H. , 1959, The Journal of the Royal College of General Practitioners.

[9]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[10]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[12]  Peter Winkler,et al.  Proof of the squashed cube conjecture , 1983, Comb..

[13]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[14]  R. Graham,et al.  Isometric embeddings of graphs. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[16]  C. Godsil,et al.  Cycles in graphs , 1985 .

[17]  Robert E. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[18]  Hans S. Witsenhausen,et al.  Minimum dimension embedding of finite metric spaces , 1986, J. Comb. Theory, Ser. A.

[19]  J. Lindenstrauss,et al.  On lipschitz embedding of finite metric spaces in low dimensional normed spaces , 1987 .

[20]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[21]  László Lovász,et al.  Rubber bands, convex embeddings and graph connectivity , 1988, Comb..

[22]  R. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[23]  P. Frankl,et al.  Linear Algebra Methods in Combinatorics I , 1988 .

[24]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[25]  Peter Frankl,et al.  On the contact dimensions of graphs , 1988, Discret. Comput. Geom..

[26]  Vojtech Rödl,et al.  Geometrical embeddings of graphs , 1989, Discret. Math..

[27]  L. Lovász,et al.  Orthogonal representations and connectivity of graphs , 1989 .

[28]  Noga Alon,et al.  Cutting disjoint disks by straight lines , 1989, Discret. Comput. Geom..

[29]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[30]  R. Ravi,et al.  Approximation through multicommodity flow , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[31]  H. Maehara,et al.  Metric transforms and Euclidean embeddings , 1990 .

[32]  Jirí Matousek Computing the Center of Planar Point Sets , 1990, Discrete and Computational Geometry.

[33]  Keith Ball Isometric Embedding in lp-spaces , 1990, Eur. J. Comb..

[34]  Baruch Awerbuch,et al.  Sparse partitions , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[35]  Gary L. Miller,et al.  Separators in two and three dimensions , 1990, STOC '90.

[36]  Bonnie Berger,et al.  The fourth moment method , 1991, SODA '91.

[37]  Alexander K. Kelmans,et al.  Graph planarity and related topics , 1991, Graph Structure Theory.

[38]  J. Matou Sek,et al.  Computing the center of planar point sets , 1991 .

[39]  Gary L. Miller,et al.  A unified geometric approach to graph separators , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[40]  Richard Pollack,et al.  Discrete and Computational Geometry: Papers from the DIMACS Special Year , 1991, Discrete and Computational Geometry.

[41]  Jiÿ ´ õ Matouÿ Note on bi-Lipschitz embeddings into normed spaces , 1992 .

[42]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[43]  Jeffrey S. Salowe On Euclidean spanner graphs with small degree , 1992, SCG '92.

[44]  J. Matousek Note on bi-Lipschitz embeddings into normed spaces , 1992 .

[45]  J. Arias-de-Reyna,et al.  Finite metric spaces needing high dimension for lipschitz embeddings in banach spaces , 1992 .

[46]  M. Laurent,et al.  Applications of cut polyhedra , 1992 .

[47]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[48]  Nathan Linial Local-Global Phenomena in Graphs , 1993, Comb. Probab. Comput..

[49]  M. Yannakakis,et al.  Approximate Max--ow Min-(multi)cut Theorems and Their Applications , 1993 .

[50]  N Linial,et al.  Low diameter graph decompositions , 1993, Comb..

[51]  L. Cowen On local representations of graphs and networks , 1993 .

[52]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[53]  Mihalis Yannakakis,et al.  Approximate max-flow min-(multi)cut theorems and their applications , 1993, SIAM J. Comput..

[54]  Éva Tardos,et al.  Improved bounds on the max-flow min-cut ratio for multicommodity flows , 1993, Comb..

[55]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[56]  Michael E. Saks,et al.  Sphere packing and local majorities in graphs , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[57]  N. Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, FOCS.

[58]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[59]  Edith Cohen,et al.  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 1994, STOC '94.

[60]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[61]  三原 京 Through the Looking-Glass and What Alice Found There を関連性理論から読む , 1997 .