On enforcing maximum principles and achieving element-wise species balance for advection-diffusion-reaction equations under the finite element method

We present a robust computational framework for advective-diffusive-reactive systems that satisfies maximum principles, the non-negative constraint, and element-wise species balance property. The proposed methodology is valid on general computational grids, can handle heterogeneous anisotropic media, and provides accurate numerical solutions even for very high P\'eclet numbers. The significant contribution of this paper is to incorporate advection (which makes the spatial part of the differential operator non-self-adjoint) into the non-negative computational framework, and overcome numerical challenges associated with advection. We employ low-order mixed finite element formulations based on least-squares formalism, and enforce explicit constraints on the discrete problem to meet the desired properties. The resulting constrained discrete problem belongs to convex quadratic programming for which a unique solution exists. Maximum principles and the non-negative constraint give rise to bound constraints while element-wise species balance gives rise to equality constraints. The resulting convex quadratic programming problems are solved using an interior-point algorithm. Several numerical results pertaining to advection-dominated problems are presented to illustrate the robustness, convergence, and the overall performance of the proposed computational framework.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Po-Wen Hsieh,et al.  On efficient least-squares finite element methods for convection-dominated problems , 2009 .

[3]  Weizhang Huang,et al.  Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators , 2013, J. Comput. Phys..

[4]  K. B. Nakshatrala,et al.  A monolithic multi-time-step computational framework for first-order transient systems with disparate scales , 2014, 1405.3230.

[5]  A. J. Wathen,et al.  An analysis of some element-by-element techniques , 1989 .

[6]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[7]  Shantanu Roy,et al.  Environmental Degradation of Metals: Corrosion Technology Series/14 , 2001 .

[8]  William E. Sanford,et al.  Tracers in Hydrology , 2011 .

[9]  Ivan Kapyrin,et al.  Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions , 2012, J. Comput. Phys..

[10]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[11]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[12]  R. Codina On stabilized finite element methods for linear systems of convection-diffusion-reaction equations , 2000 .

[13]  Weizhang Huang,et al.  Discrete Maximum Principle for the Weak Galerkin Method for Anisotropic Diffusion Problems , 2014, 1401.6232.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  Andreas Englert,et al.  Mixing, spreading and reaction in heterogeneous media: a brief review. , 2011, Journal of contaminant hydrology.

[16]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[17]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[18]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[19]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[20]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[21]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[22]  Nicholas I. M. Gould,et al.  Preprocessing for quadratic programming , 2004, Math. Program..

[23]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[24]  Albert J. Valocchi,et al.  Variational structure of the optimal artificial diffusion method for the advection-diffusion equation , 2009, ArXiv.

[25]  P. Bedient,et al.  Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation , 1986 .

[26]  Ute Hoffmann,et al.  Drug Delivery Engineering Principles For Drug Therapy , 2016 .

[27]  I. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics , 1998 .

[28]  Rs Cant,et al.  An Introduction to Turbulent Reacting Flows , 2007 .

[29]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[30]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[31]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[32]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[33]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[34]  Leonard Yves Rüst The P-matrix linear complementarity problem , 2007 .

[35]  Harsha Nagarajan,et al.  Enforcing the non‐negativity constraint and maximum principles for diffusion with decay on general computational grids , 2010, ArXiv.

[36]  Martin Stynes,et al.  On the Stability of Residual-Free Bubbles for Convection-Diffusion Problemsand their Approximation by a Two-Level Finite Element Method. , 1997 .

[37]  Emilio Hernández-García,et al.  Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach , 2009 .

[38]  Natalia Kopteva,et al.  How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers? , 2004 .

[39]  Volker John,et al.  An assessment of discretizations for convection-dominated convection–diffusion equations , 2011 .

[40]  Maruti Kumar Mudunuru,et al.  A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint , 2012, J. Comput. Phys..

[41]  James P. Keener,et al.  Comprar Mathematical Physiology · I: Cellular Physiology | Keener, James | 9780387758466 | Springer , 2009 .

[42]  P. Smolarkiewicz The Multi-Dimensional Crowley Advection Scheme , 1982 .

[43]  Péter Érdi,et al.  Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models , 1989 .

[44]  Harsha Nagarajan,et al.  A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations , 2012, ArXiv.

[45]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[46]  Chin-Fu Tsang,et al.  Flow and Contaminant Transport in Fractured Rock , 1993 .

[47]  Massimiliano Giona,et al.  A spectral approach to reaction/diffusion kinetics in chaotic flows , 2002 .

[48]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[49]  Stephen M. Cox,et al.  Chaotic mixing of a competitive–consecutive reaction , 2004 .

[50]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[51]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[52]  Yue-Kin Tsang,et al.  Predicting the evolution of fast chemical reactions in chaotic flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[54]  Martin Stynes,et al.  Numerical methods for convection-diffusion problems or The 30 years war , 2013, 1306.5172.

[55]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[56]  Muhammad Ayub,et al.  A NEW STABILIZED FORMULATION FOR CONVECTIVE-DIFFUSIVE HEAT TRANSFER , 2003 .

[57]  Albert J. Valocchi,et al.  Non-negative mixed finite element formulations for a tensorial diffusion equation , 2008, J. Comput. Phys..

[58]  Maruti Kumar Mudunuru,et al.  On mesh restrictions to satisfy comparison principles, maximum principles, and the non-negative constraint: Recent developments and new results , 2015, ArXiv.

[59]  J. N. Reddy,et al.  On the performance of high‐order finite elements with respect to maximum principles and the nonnegative constraint for diffusion‐type equations , 2011, ArXiv.

[60]  C. Kreuzer A note on why enforcing discrete maximum principles by a simple a posteriori cutoff is a good idea , 2012, 1208.3958.

[61]  George Polya,et al.  Mathematical discovery : on understanding, learning, and teaching problem solving , 1962 .

[62]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[63]  Susan Eitelman,et al.  Matlab Version 6.5 Release 13. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098; 508/647-7000, Fax 508/647-7001, www.mathworks.com , 2003 .

[64]  Charles J Werth,et al.  Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments. , 2008, Environmental science & technology.

[65]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..