About Linearization of Infinite-Dimensional Hamiltonian Systems

This article is concerned with analytic Hamiltonian dynamical systems in infinite dimension in a neighborhood of an elliptic fixed point. Given a quadratic Hamiltonian, we consider the set of its analytic higher order perturbations. We first define the subset of elements which are formally symplectically conjugacted to a (formal) Birkhoff normal form. We prove that if the quadratic Hamiltonian satisfies a Diophantine-like condition and if such a perturbation is formally symplectically conjugated to the quadratic Hamiltonian, then it is also analytically symplectically conjugated to it. Of course what is an analytic symplectic change of variables depends strongly on the choice of the phase space. Here we work on periodic functions with Gevrey regularity.

[1]  S. Pasquali,et al.  On the integrability of Degasperis–Procesi equation: Control of the Sobolev norms and Birkhoff resonances , 2018, Journal of Differential Equations.

[2]  P. Baldi,et al.  Time quasi-periodic gravity water waves in finite depth , 2017, Inventiones mathematicae.

[3]  M. Berti,et al.  Almost global existence of solutions for capillarity-gravity water waves equations with periodic spatial boundary conditions , 2017, 1702.04674.

[4]  M. Berti,et al.  Traveling Quasi-periodic Water Waves with Constant Vorticity , 2020, Archive for Rational Mechanics and Analysis.

[5]  Dario Bambusi,et al.  On long time stability in Hamiltonian perturbations of non-resonant linear PDEs , 1999 .

[6]  D. Bambusi,et al.  Convergence to Normal Forms of Integrable PDEs , 2019, Communications in Mathematical Physics.

[7]  E. Zehnder C. L. Siegel's linearization theorem in infinite dimensions , 1978 .

[8]  Luca Biasco,et al.  KAM theory for the Hamiltonian derivative wave equation , 2011, 1111.3905.

[9]  On invariant manifolds of complex analytic mappings near fixed points , 2002 .

[10]  J. Pöschel,et al.  Small divisors with spatial structure in infinite dimensional Hamiltonian systems , 1990 .

[11]  Jean-Marc Delort,et al.  A quasi-linear Birkhoff normal forms method : application to the quasi-linear Klein-Gordon equations on S[1] , 2012 .

[12]  Xiaoping Yuan KAM Theorem with Normal Frequencies of Finite Limit‐Points for Some Shallow Water Equations , 2018, Communications on Pure and Applied Mathematics.

[13]  G. Iooss,et al.  Polynomial normal forms with exponentially small remainder for analytic vector fields , 2005 .

[14]  Jessica Elisa Massetti,et al.  An Abstract Birkhoff Normal Form Theorem and Exponential Type Stability of the 1d NLS , 2020 .

[15]  Dario Bambusi,et al.  Birkhoff Normal Form for Some Nonlinear PDEs , 2003 .

[16]  Jean-Marc Delort,et al.  Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces , 2006 .

[17]  B. M. Fulk MATH , 1992 .

[18]  Jeremie Szeftel,et al.  Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres , 2004 .

[19]  G. Benettin,et al.  A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom , 1988 .

[20]  B. Grébert,et al.  Forme normale pour NLS en dimension quelconque , 2003 .

[21]  J. Bourgain On invariant tori of full dimension for 1D periodic NLS , 2005 .

[22]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .

[23]  M. Berti,et al.  An abstract Nash-Moser theorem with parameters and applications to PDEs , 2010 .

[24]  Jean Bourgain,et al.  QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .

[25]  On Nekhoroshev's estimate at an elliptic equilibrium , 1999 .

[26]  Jessica Elisa Massetti,et al.  Almost periodic invariant tori for the NLS on the circle , 2019, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[27]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[28]  G. Benettin,et al.  The Steep Nekhoroshev’s Theorem , 2014, 1403.6776.

[29]  Dario Bambusi,et al.  Almost global existence for Hamiltonian semilinear Klein‐Gordon equations with small Cauchy data on Zoll manifolds , 2005, math/0510292.

[30]  Sergei Kuksin,et al.  KAM for the nonlinear Schrödinger equation , 2010 .

[31]  M. Berti,et al.  An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds , 2013, 1311.6943.

[32]  L. Niederman Exponential stability for small perturbations of steep integrable Hamiltonian systems , 2004, Ergodic Theory and Dynamical Systems.

[33]  J. You,et al.  An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation , 2011 .

[34]  W. Fulton,et al.  Lie Algebras and Lie Groups , 2004 .

[35]  L. Stolovitch Family of intersecting totally real manifolds of $(C^n ,0)$ and germs of holomorphic diffeomorphisms , 2016, 1603.02646.

[36]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .

[37]  M. Berti,et al.  Birkhoff Normal Form and Long Time Existence for Periodic Gravity Water Waves , 2018, Communications on Pure and Applied Mathematics.

[38]  Dario Bambusi,et al.  Birkhoff normal form for partial differential equations with tame modulus , 2006 .

[39]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[40]  N V Nikolenko,et al.  The method of Poincaré normal forms in problems of integrability of equations of evolution type , 1986 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Jean Bourgain,et al.  Construction of approximative and almost periodic solutions of perturbed linear schrödinger and wave equations , 1996 .

[43]  鈴木 麻美,et al.  「On the Iteration of Analytic Functions」(木村俊房先生の仕事から) , 1998 .

[44]  Jean-Marc Delort,et al.  Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres , 2015 .

[45]  Dario Bambusi,et al.  Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations , 1999 .

[46]  Lufang Mi,et al.  A Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation , 2020 .

[47]  Jean-Marc Delort,et al.  A Quasi-linear Birkhoff Normal Forms Method. Application to the Quasi-linear Klein-gordon Equation on S a Quasi-linear Birkhoff Normal Forms Method. Application to the Quasi-linear Klein-gordon Equation on S , 2009 .

[48]  B. Fayad,et al.  Double exponential stability for generic real-analytic elliptic equilibrium points , 2015, 1509.00285.

[49]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[50]  G. Benettin,et al.  A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems , 1985 .

[51]  Jing Zhang,et al.  Long Time Stability of Hamiltonian Partial Differential Equations , 2014, SIAM J. Math. Anal..

[52]  R. Feola,et al.  Long time existence for fully nonlinear NLS with small Cauchy data on the circle , 2018, 1806.03437.

[53]  Eric Lombardi,et al.  Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation , 2010 .

[54]  Erwan Faou,et al.  A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus , 2013 .

[55]  Xiaoping Yuan,et al.  The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation , 2019, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[56]  Yunfeng Shi,et al.  The Stability of Full Dimensional KAM tori for Nonlinear Schr\"odinger equation , 2017, 1705.01658.

[57]  C. Procesi,et al.  Reducible quasi-periodic solutions for the non linear Schrödinger equation , 2015, 1504.00564.