Analysis of Ethernet-switch traffic shapers for in-vehicle networking applications

Switched Ethernet has been proposed as network technology for automotive and industrial applications. IEEE AVB is a collection of standards that specifies (among other elements) a set of network traffic shaping mechanisms (i.e., rules to regulate the traffic flow) to have guaranteed Quality of Service for Audio/Video traffic. However, in-vehicle control applications like advanced driver-assistance systems require much lower latencies than provided by this standard. Within the context of IEEE TSN (Time Sensitive Networking), three new traffic shaping mechanisms are considered, named Burst Limiting, Time Aware and Peristaltic shaper respectively. In this paper we explain and compare these shapers, we examine their worst case end-to-end latencies analytically and we investigate their behavior through a simulation of a particular setup. We show that the shapers hardly satisfy the requirements for 100Mbps Ethernet, but can come close under further restrictions. We also show the impact the shapers have on AVB traffic.

[1]  Hermann Kopetz,et al.  A Time-Triggered Ethernet (TTE) Switch , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[2]  Thomas C. Schmidt,et al.  Extending IEEE 802.1 AVB with time-triggered scheduling: A simulation study of the coexistence of synchronous and asynchronous traffic , 2013, 2013 IEEE Vehicular Networking Conference.

[3]  Petru Eles,et al.  Schedulability analysis of Ethernet AVB switches , 2014, 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications.