The effect of charges on the corneal penetration of solid lipid nanoparticles loaded econazole after topical administration in rabbits.

[1]  V. Andonova,et al.  Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms , 2023, Pharmaceuticals.

[2]  P. Santi,et al.  Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. , 2022, Journal of controlled release : official journal of the Controlled Release Society.

[3]  Sumeet Gupta,et al.  Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy—An Overview on Recent Advances , 2022, Pharmaceutics.

[4]  Pinal Chaudhari,et al.  Voriconazole-Cyclodextrin Supramolecular Ternary Complex-Loaded Ocular Films for Management of Fungal Keratitis. , 2021, Molecular pharmaceutics.

[5]  Jingguo Li,et al.  Assessment to the Antifungal Effects in vitro and the Ocular Pharmacokinetics of Solid-Lipid Nanoparticle in Rabbits , 2021, International journal of nanomedicine.

[6]  Jianliang Shen,et al.  A dual-functional chitosan derivative platform for fungal keratitis. , 2021, Carbohydrate polymers.

[7]  M. Feghhi,et al.  Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. , 2021, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  P. Krzyściak,et al.  Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives , 2021, Pharmaceuticals.

[9]  R. Shamma,et al.  Effective Ocular Delivery of Eplerenone Using Nanoengineered Lipid Carriers in Rabbit Model , 2021, International journal of nanomedicine.

[10]  Mohammad Mehdi Mahboobian,et al.  Acyclovir-Loaded Nanoemulsions: Preparation, Characterization and Irritancy Studies for Ophthalmic Delivery , 2021, Current eye research.

[11]  C. Minelli,et al.  Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study , 2021, International journal of nanomedicine.

[12]  Ceren Kımna,et al.  Biopolymer-based nanoparticles with tunable mucoadhesivity efficiently deliver therapeutics across the corneal barrier. , 2021, Materials science & engineering. C, Materials for biological applications.

[13]  M. A. El-Sokkary,et al.  Ocular Inserts of Voriconazole-Loaded Proniosomal Gels: Formulation, Evaluation and Microbiological Studies , 2020, International journal of nanomedicine.

[14]  N. Sharma,et al.  Development of mirtazapine loaded solid lipid nanoparticles for topical delivery: Optimization, characterization and cytotoxicity evaluation. , 2020, International journal of pharmaceutics.

[15]  Pengcheng Li,et al.  Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. , 2020, Carbohydrate polymers.

[16]  Jun Liu,et al.  Corneal Hydration Control during Ex Vivo Experimentation Using Poloxamers , 2020, Current eye research.

[17]  Q. Ping,et al.  Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment , 2020, Drug delivery.

[18]  Karthik Yadav Janga,et al.  In Situ Gel of Triamcinolone Acetonide-Loaded Solid Lipid Nanoparticles for Improved Topical Ocular Delivery: Tear Kinetics and Ocular Disposition Studies , 2018, Nanomaterials.

[19]  V. Mishra,et al.  Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems , 2018, Pharmaceutics.

[20]  A. Sosnik,et al.  Polymer‐based carriers for ophthalmic drug delivery , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[21]  M. Espina,et al.  Development of fluorometholone‐loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye , 2018, International journal of pharmaceutics.

[22]  A. Urtti,et al.  Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[23]  F. Otero-Espinar,et al.  Ophthalmic Econazole Hydrogels for the Treatment of Fungal Keratitis. , 2018, Journal of pharmaceutical sciences.

[24]  Rinda Devi Bachu,et al.  Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases , 2018, Pharmaceutics.

[25]  A. Mihranyan,et al.  Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. , 2018, International journal of pharmaceutics.

[26]  Abdelhalim I. Elassasy,et al.  Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization , 2018, Drug delivery.

[27]  P. Khaw,et al.  Principles of pharmacology in the eye , 2017, British journal of pharmacology.

[28]  Anna F. A. Peacock,et al.  Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides. , 2017, Investigative ophthalmology & visual science.

[29]  K. Kesavan,et al.  Development of microemulsions for ocular delivery. , 2017, Therapeutic delivery.

[30]  A. Mitra,et al.  Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[31]  Sai Prachetan Balguri,et al.  Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[32]  S. Palma,et al.  Novel Polymeric Nanoparticles Intended for Ophthalmic Administration of Acetazolamide. , 2016, Journal of pharmaceutical sciences.

[33]  A. Silva,et al.  PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization. , 2016, Colloids and surfaces. B, Biointerfaces.

[34]  Dimitrios N. Bikiaris,et al.  Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses , 2016, International journal of molecular sciences.

[35]  N. Mishra,et al.  Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease , 2015, Drug delivery.

[36]  Jingguo Li,et al.  Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration , 2015, International journal of nanomedicine.

[37]  Y. Javadzadeh,et al.  Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles , 2015, DARU Journal of Pharmaceutical Sciences.

[38]  B. Todd,et al.  Size-Dependent Diffusion of Dextrans in Excised Porcine Corneal Stroma. , 2015, Molecular & cellular biomechanics : MCB.

[39]  Huajian Gao,et al.  Physical Principles of Nanoparticle Cellular Endocytosis. , 2015, ACS nano.

[40]  Jing Lin,et al.  Natamycin in the treatment of fungal keratitis: a systematic review and Meta-analysis. , 2015, International journal of ophthalmology.

[41]  S. Eğrilmez,et al.  Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[42]  M. Jabbarvand,et al.  Penetration of Silicate Nanoparticles into the Corneal Stroma and Intraocular Fluids , 2014, Cornea.

[43]  Y. Shimomura,et al.  A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. , 2014, Toxicology.

[44]  A. R. Gascón,et al.  Lipid nanoparticles as drug/gene delivery systems to the retina. , 2013, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[45]  P. Artal,et al.  Analysis of Corneal Stroma Organization With Wavefront Optimized Nonlinear Microscopy , 2011, Cornea.

[46]  Yolanda Diebold,et al.  Applications of nanoparticles in ophthalmology , 2010, Progress in Retinal and Eye Research.

[47]  A. Seyfoddin,et al.  Solid lipid nanoparticles for ocular drug delivery , 2010, Drug delivery.

[48]  S. Doktorovová,et al.  Feasibility of Lipid Nanoparticles for Ocular Delivery of Anti-Inflammatory Drugs , 2010, Current eye research.

[49]  Y. Yazan,et al.  Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery , 2010, Journal of microencapsulation.

[50]  A. Attama,et al.  Sustained Release and Permeation of Timolol from Surface-Modified Solid Lipid Nanoparticles through Bioengineered Human Cornea , 2009, Current eye research.

[51]  G. Yener,et al.  Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives , 2007, International journal of nanomedicine.

[52]  R. Manservigi,et al.  Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. , 2006, International journal of pharmaceutics.

[53]  K R Wilhelmus,et al.  The Draize eye test. , 2001, Survey of ophthalmology.

[54]  S. Doktorovová,et al.  Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[55]  J. Chodosh,et al.  Diagnostic and Therapeutic Considerations in Fungal Keratitis , 2011, International ophthalmology clinics.