Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode

[1]  N. Thompson,et al.  Xi. The origin of fatigue fracture in copper , 1956 .

[2]  W. Wood Formation of fatigue cracks , 1958 .

[3]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[4]  L. Maissel,et al.  An introduction to thin films , 1973 .

[5]  D. Gupta,et al.  Grain boundary self-diffusion in evaporated Au films at low temperatures , 1974 .

[6]  D. Duquette Environmental Effects on General Fatigue Resistance and Crack Nucleation in Metals and Alloys. , 1978 .

[7]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[8]  R. Pascual,et al.  Low amplitude fatigue of copper single crystals—I. The role of the surface in fatigue failure , 1983 .

[9]  C. Grovenor,et al.  Grain structure variation with temperature for evaporated metal films , 1984 .

[10]  Rustum Roy,et al.  Materials Research Society , 1984 .

[11]  David J. Edell,et al.  A Peripheral Nerve Information Transducer for Amputees: Long-Term Multichannel Recordings from Rabbit Peripheral Nerves , 1986, IEEE Transactions on Biomedical Engineering.

[12]  F. Ohuchi,et al.  Metal polyimide interface: A titanium reaction mechanism , 1986 .

[13]  A. Vasudévan,et al.  Grain boundary ductile fracture in precipitation hardened aluminum alloys , 1987 .

[14]  J. Bressers,et al.  Fatigue and Microstructure , 1987 .

[15]  P. Bodö,et al.  Ion bombardment and titanium film growth on polyimide , 1988 .

[16]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[17]  J. Hetke,et al.  Strength characterization of silicon microprobes in neurophysiological tissues , 1990, IEEE Transactions on Biomedical Engineering.

[18]  K. Najafi,et al.  Scaling limitations of silicon multichannel recording probes , 1990, IEEE Transactions on Biomedical Engineering.

[19]  J. Baglin Interface Design for Thin Film Adhesion , 1991 .

[20]  H. Nemoto,et al.  Conductive polymer-high modulus polymer alloys. A solution route to Kevlar-polypyrrole hybrid fibers , 1991 .

[21]  Lieng-Huang Lee,et al.  Fundamentals of adhesion , 1991 .

[22]  S. Suresh Fatigue of materials , 1991 .

[23]  W.L.C. Rutten,et al.  Sensitivity and selectivity of intraneural stimulation using a silicon electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[24]  G. Kovacs,et al.  Regeneration microelectrode array for peripheral nerve recording and stimulation , 1992, IEEE Transactions on Biomedical Engineering.

[25]  B. Wheeler,et al.  A flexible perforated microelectrode array for extended neural recordings , 1992, IEEE Transactions on Biomedical Engineering.

[26]  J. Moulton,et al.  Gel processing of electrically conductive blends of poly(3‐octylthiophene) and ultrahigh molecular weight polyethylene , 1992 .

[27]  W. Grill,et al.  Selective control of muscle activation with a multipolar nerve cuff electrode , 1993, IEEE Transactions on Biomedical Engineering.

[28]  C. Hsu,et al.  Polyaniline spinning solutions and fibers , 1993 .

[29]  C. Thompson The yield stress of polycrystalline thin films , 1993 .

[30]  J Rozman,et al.  Multielectrode spiral cuff for ordered and reversed activation of nerve fibres. , 1993, Journal of biomedical engineering.

[31]  G. Sheu,et al.  Surface modification of Kevlar 149 fibers by gas plasma treatment. Part II. Improved interfacial adhesion to epoxy resin , 1994 .

[32]  T.G. McNaughton,et al.  Action potential classification with dual channel intrafascicular electrodes , 1994, IEEE Transactions on Biomedical Engineering.

[33]  G. Sheu,et al.  Surface modification of Kevlar 149 fibers by gas plasma treatment , 1994 .

[34]  K. Wise,et al.  Silicon ribbon cables for chronically implantable microelectrode arrays , 1994, IEEE Transactions on Biomedical Engineering.

[35]  J. Lai,et al.  Improvement of adhesion of Kevlar fiber to epoxy by chemical modification , 1994 .

[36]  Paul S. Ho,et al.  Stress-induced phenomena in metallization , 1994 .

[37]  K. Najafi,et al.  A micromachined silicon sieve electrode for nerve regeneration applications , 1994, IEEE Transactions on Biomedical Engineering.

[38]  Y. Pauleau,et al.  Materials and processes for surface and interface engineering , 1995 .

[39]  J. Baglin Interface Structure, Adhesion, and Ion Beam Processing , 1995 .

[40]  T. G. McNaughton,et al.  Metallized polymer fibers as leadwires and intrafascicular microelectrodes , 1996, Journal of Neuroscience Methods.

[41]  R. Smith,et al.  A two‐dimensional molecular dynamics simulation of thin film growth by oblique deposition , 1996 .

[42]  W. Grill,et al.  Quantification of recruitment properties of multiple contact cuff electrodes. , 1996, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[43]  Thomas Stieglitz,et al.  A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves , 1997 .

[44]  K. Owusu-Boahen,et al.  Tem Study of Yielding in Polycrystalline Gold Thin Films , 1997 .

[45]  J S Walter,et al.  Multielectrode nerve cuff stimulation of the median nerve produces selective movements in a raccoon animal model. , 1997, The journal of spinal cord medicine.

[46]  Carlos González,et al.  A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues , 1997, Journal of Neuroscience Methods.

[47]  Thomas Stieglitz,et al.  Microtechnical Interfaces to Neurons , 1998 .

[48]  Plasma Treatment of Polymers for Improving Al Adhesion , 1998 .

[49]  B. Stansfield,et al.  Plasma etching : fundamentals and applications , 1998 .

[50]  Nucleation, growth, interdiffusion, and adhesion of metal films on polymers , 1999 .

[51]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[52]  D. Kipke,et al.  Development of the thin-film longitudinal intra-fascicular electrode , 2000 .

[53]  E. Valderrama,et al.  Polyimide cuff electrodes for peripheral nerve stimulation , 2000, Journal of Neuroscience Methods.

[54]  R. Stein,et al.  Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. , 2001, Journal of neurophysiology.

[55]  Justin C. Williams,et al.  Flexible polyimide-based intracortical electrode arrays with bioactive capability , 2001, IEEE Transactions on Biomedical Engineering.

[56]  T. Sinkjaer,et al.  Long-term biocompatibility of implanted polymer-based intrafascicular electrodes. , 2002, Journal of biomedical materials research.

[57]  Milton Ohring,et al.  Materials science of thin films : deposition and structure , 2002 .

[58]  Horacio Dante Espinosa,et al.  Size effects on the mechanical behavior of gold thin films , 2003 .

[59]  Horacio Dante Espinosa,et al.  A methodology for determining mechanical properties of freestanding thin films and MEMS materials , 2003 .

[60]  Suzanne S. Stensaas,et al.  Histopathological evaluation of materials implanted in the cerebral cortex , 1978, Acta Neuropathologica.

[61]  T. G. McNaughton,et al.  Recording Properties and Biocompatibility of Chronically Implanted Polymer-based Intrafascicular Electrodes , 1998, Annals of Biomedical Engineering.