Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes

[1]  A. Majumdar,et al.  Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials , 2007, IEEE Transactions on Components and Packaging Technologies.

[2]  S. Guo,et al.  Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites , 2007 .

[3]  K. Goodson,et al.  3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon , 2006 .

[4]  Cher Ming Tan,et al.  Change in thermal conductivity of cylindrical silicon nanowires induced by surface bonding modification , 2006 .

[5]  Ravi Prasher,et al.  Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: A theoretical study , 2006 .

[6]  Patrick E. Phelan,et al.  Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts , 2006 .

[7]  Ravi Prasher,et al.  Thermal Interface Materials: Historical Perspective, Status, and Future Directions , 2006, Proceedings of the IEEE.

[8]  R. Prasher Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores , 2006 .

[9]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[10]  O. Bourgeois,et al.  Measurement of the thermal conductance of silicon nanowires at low temperature , 2006, cond-mat/0608705.

[11]  Hsin-Ying Chiu,et al.  Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates , 2006 .

[12]  E. Grulke,et al.  Thermal and rheological properties of carbon nanotube-in-oil dispersions , 2006 .

[13]  Jun Xu,et al.  Enhanced thermal contact conductance using carbon nanotube array interfaces , 2006, IEEE Transactions on Components and Packaging Technologies.

[14]  Jun Li,et al.  Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber , 2006 .

[15]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[16]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[17]  Ravi Prasher,et al.  Predicting the thermal resistance of nanosized constrictions. , 2005, Nano letters.

[18]  Sinan Müftü,et al.  Nano-Scale Effects in the Sliding and Rolling of a Cylinder on a Substrate , 2005 .

[19]  N. Mingo,et al.  Carbon nanotube ballistic thermal conductance and its limits. , 2005, Physical review letters.

[20]  Huaqing Xie,et al.  Measuring the thermal conductivity of a single carbon nanotube. , 2005, Physical review letters.

[21]  C. N. Lau,et al.  Ballistic phonon thermal transport in multiwalled carbon nanotubes. , 2005, Physical review letters.

[22]  B. Wei,et al.  Specific heat of aligned multiwalled carbon nanotubes , 2005 .

[23]  H. Dai,et al.  Negative differential conductance and hot phonons in suspended nanotube molecular wires. , 2005, Physical review letters.

[24]  E. Riedo,et al.  Radial elasticity of multiwalled carbon nanotubes. , 2005, Physical review letters.

[25]  Jacqueline J. Li,et al.  Transversely isotropic elastic properties of multiwalled carbon nanotubes , 2005 .

[26]  G. Mahan,et al.  Flexure modes in carbon nanotubes , 2004 .

[27]  Gang Chen,et al.  Thermal conductivity modeling of periodic two-dimensional nanocomposites , 2004 .

[28]  Li Shi,et al.  Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device , 2003 .

[29]  Huajian Gao,et al.  Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. , 2003, Physical review letters.

[30]  V. Popov Low-temperature specific heat of nanotube systems , 2002 .

[31]  G. Mahan,et al.  Oscillations of a thin hollow cylinder: Carbon nanotubes , 2002 .

[32]  J. Hone,et al.  Thermal properties of carbon nanotubes and nanotube-based materials , 2002 .

[33]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[34]  C. Q. Ru,et al.  Column buckling of multiwalled carbon nanotubes with interlayer radial displacements , 2000 .

[35]  Seiji Akita,et al.  Influence of stiffness of carbon-nanotube probes in atomic force microscopy , 2000 .

[36]  Fischer,et al.  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[37]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[38]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[39]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[40]  S. Louie,et al.  Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes , 1999 .

[41]  P. B. Allen,et al.  Electron transport through a circular constriction , 1998, cond-mat/9811296.

[42]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[43]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[44]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[45]  M. Wybourne,et al.  Acoustic phonon modes of rectangular quantum wires , 1997 .

[46]  DeWeert Mj Transition from Sharvin to Drude resistance in high-mobility wires. , 1994 .

[47]  Parker,et al.  Deformation and adhesion of elastic bodies in contact. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[48]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[49]  Pohl,et al.  Phonon scattering at silicon crystal surfaces. , 1987, Physical review. B, Condensed matter.

[50]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[51]  M. Dresselhaus,et al.  The temperature variation of the thermal conductivity of benzene-derived carbon fibers , 1984 .

[52]  W. W. Lozier,et al.  Thermal diffusivity and thermal conductivity of pyrolytic graphite from 300 to 2700° K , 1973 .

[53]  B. Kelly The effect of defects on the basal plane thermal conductivity of a graphite crystal , 1967 .

[54]  D. Young,et al.  Anisotropy of thermal conductance in near-ideal graphite , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  M. G. Holland,et al.  Thermal Conductivity of Pyrolytic Graphite at Low Temperatures. I. Turbostratic Structures , 1964 .

[56]  G. A. Slack,et al.  Anisotropic Thermal Conductivity of Pyrolytic Graphite , 1962 .

[57]  K. Komatsu Theory of the Specific Heat of Graphite II , 1951 .

[58]  C. Hui,et al.  A cohesive zone model for the adhesion of cylinders , 1997 .

[59]  P. Klemens,et al.  Thermal conductivity of graphite in the basal plane , 1994 .

[60]  R. Taylor,et al.  The thermal conductivity of pyrolytic graphite , 1966 .

[61]  P. Carruthers,et al.  Theory of Thermal Conductivity of Solids at Low Temperatures , 1961 .